skip to main content


Search for: All records

Award ID contains: 2011362

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Cooking is an important but understudied source of urban anthropogenic fine particulate matter (PM2.5). Using a mobile laboratory, we measured PM size and composition in urban restaurant plumes. Size distribution measurements indicate that restaurants are a source of urban ultrafine particles (UFPs, particles <100 nm mobility diameter), with a mode diameter <50 nm across sampled restaurants and particle number concentrations (PNCs, a proxy for UFPs) that were substantially elevated relative to the urban background. In our observations, PM mass emitted from restaurants was almost entirely organic aerosol (OA). Aerosol mass spectra show that while emissions from most restaurants were similar, there were key mass spectral differences. All restaurants emit OA at m/z 41, 43, and 55, though the composition (e.g., the ratio of oxygenated to reduced ions at specific m/z) varied across locations. All restaurant emissions included reduced-nitrogen species detected as CxHyN+ fragments, making up ∼15 % of OA mass measured in plumes, with reduced molecular functionalities (e.g., amines, imides) that were often accompanied by oxygen-containing functional groups. The largest reduced-nitrogen emissions were observed from a commercial bread bakery (i.e., 30 %–50 % of OA mass), highlighting the marked differences between restaurants and their importance for emissions of both urban UFPs and reduced nitrogen.

     
    more » « less
    Free, publicly-accessible full text available January 30, 2025
  2. Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry–reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.

     
    more » « less
    Free, publicly-accessible full text available January 26, 2025
  3. Liquid asphalt is a petroleum-derived substance commonly used in construction activities. Recent work has identified lower volatility, reactive organic carbon from asphalt as an overlooked source of secondary organic aerosol (SOA) precursor emissions. Here, we leverage potential emission estimates and usage data to construct a bottom-up inventory of asphalt-related emissions in the United States. In 2018, we estimate that hot-mix, warm-mix, emulsified, cutback, and roofing asphalt generated ∼380 Gg (317 Gg–447 Gg) of organic compound emissions. The impacts of these emissions on anthropogenic SOA and ozone throughout the contiguous United States are estimated using photochemical modeling. In several major cities, asphalt-related emissions can increase modeled summertime SOA, on average, by 0.1–0.2 μg m−3 (2–4% of SOA) and may reach up to 0.5 μg m−3 at noontime on select days. The influence of asphalt-related emissions on modeled ozone are generally small (∼0.1 ppb). We estimate that asphalt paving-related emissions are half of what they were nearly 50 years ago, largely due to the concerted efforts to reduce emissions from cutback asphalts. If on-road mobile emissions continue their multidecadal decline, contributions of urban SOA from evaporative and non-road mobile sources will continue to grow in relative importance. 
    more » « less
    Free, publicly-accessible full text available July 19, 2024
  4. Volatile chemical products (VCPs) and other non-combustion-related sourceshave become important for urban air quality, and bottom-up calculationsreport emissions of a variety of functionalized compounds that remainunderstudied and uncertain in emissions estimates. Using a new instrumentalconfiguration, we present online measurements of oxygenated organiccompounds in a US megacity over a 10 d wintertime sampling period, whenbiogenic sources and photochemistry were less active. Measurements wereconducted at a rooftop observatory in upper Manhattan, New York City, USAusing a Vocus chemical ionization time-of-flight mass spectrometer, withammonium (NH4+) as the reagent ion operating at 1 Hz. The range ofobservations spanned volatile, intermediate-volatility, and semi-volatileorganic compounds, with targeted analyses of ∼150 ions, whoselikely assignments included a range of functionalized compound classes suchas glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters,ethanolamines, and ketones that are found in various consumer, commercial,and industrial products. Their concentrations varied as a function of winddirection, with enhancements over the highly populated areas of the Bronx,Manhattan, and parts of New Jersey, and included abundant concentrations ofacetates, acrylates, ethylene glycol, and other commonly used oxygenatedcompounds. The results provide top-down constraints on wintertime emissionsof these oxygenated and functionalized compounds, with ratios to commonanthropogenic marker compounds and comparisons of their relative abundancesto two regionally resolved emissions inventories used in urban air qualitymodels.

     
    more » « less
  5. Thirdhand smoke (THS) persists in locations where smoking previously occurred and can be transported into non-smoking environments, leading to non-smoker exposure. Laboratory experiments using high-resolution mass spectrometry demonstrate that deposited particulate matter (PM) and smoke-exposed surrogate lung lining fluid (LLF) are substantial, chemically-complex reservoirs of gas-phase THS emissions, including hazardous air pollutants, polycyclic aromatic compounds, and nitrogen/oxygen-containing species. Both PM and LLF are persistent real-world THS reservoirs that chemically evolve over time, and can act as vehicles for the transport and emission of reactive pollutants and their reaction byproducts (e.g., acrolein). Deposited PM on clothes, furnishings, bodies, and/or airways will emit volatile to semi-volatile gases over long lifetimes, which can re-partition to other indoor materials and increase their overall persistence. On the other hand, LLF off-gassing consists predominantly of volatile organic compounds in amounts influenced by their aqueous solubilities, and their persistence in breath will be prolonged by re-distribution across internal aqueous reservoirs, as corroborated by multicompartment modeling in this study. 
    more » « less
  6. null (Ed.)