skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anthropogenic secondary organic aerosol and ozone production from asphalt-related emissions
Liquid asphalt is a petroleum-derived substance commonly used in construction activities. Recent work has identified lower volatility, reactive organic carbon from asphalt as an overlooked source of secondary organic aerosol (SOA) precursor emissions. Here, we leverage potential emission estimates and usage data to construct a bottom-up inventory of asphalt-related emissions in the United States. In 2018, we estimate that hot-mix, warm-mix, emulsified, cutback, and roofing asphalt generated ∼380 Gg (317 Gg–447 Gg) of organic compound emissions. The impacts of these emissions on anthropogenic SOA and ozone throughout the contiguous United States are estimated using photochemical modeling. In several major cities, asphalt-related emissions can increase modeled summertime SOA, on average, by 0.1–0.2 μg m−3 (2–4% of SOA) and may reach up to 0.5 μg m−3 at noontime on select days. The influence of asphalt-related emissions on modeled ozone are generally small (∼0.1 ppb). We estimate that asphalt paving-related emissions are half of what they were nearly 50 years ago, largely due to the concerted efforts to reduce emissions from cutback asphalts. If on-road mobile emissions continue their multidecadal decline, contributions of urban SOA from evaporative and non-road mobile sources will continue to grow in relative importance.  more » « less
Award ID(s):
2011362
PAR ID:
10493766
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Atmospheres
Volume:
3
Issue:
8
ISSN:
2634-3606
Page Range / eLocation ID:
1221 to 1230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Asphalt-based materials are abundant and a major nontraditional source of reactive organic compounds in urban areas, but their emissions are essentially absent from inventories. At typical temperature and solar conditions simulating different life cycle stages (i.e., storage, paving, and use), common road and roofing asphalts produced complex mixtures of organic compounds, including hazardous pollutants. Chemically speciated emission factors using high-resolution mass spectrometry reveal considerable oxygen and reduced sulfur content and the predominance of aromatic (~30%) and intermediate/semivolatile organic compounds (~85%), which together produce high overall secondary organic aerosol (SOA) yields. Emissions rose markedly with moderate solar exposure (e.g., 300% for road asphalt) with greater SOA yields and sustained SOA production. On urban scales, annual estimates of asphalt-related SOA precursor emissions exceed those from motor vehicles and substantially increase existing estimates from noncombustion sources. Yet, their emissions and impacts will be concentrated during the hottest, sunniest periods with greater photochemical activity and SOA production. 
    more » « less
  2. Asphalt-related emissions are an understudied source of reactive organic compounds with the potential to form organic aerosol (OA). Ambient aerosol mass spectrometry (AMS) measurements of asphalt-related aerosols near a month-long road paving project showed enhanced ambient OA concentrations with a mix of primary and secondary OA signatures. For comparison, gas-phase emissions from real-world road asphalt samples at application (e.g., 140 °C) and in-use (e.g., 60 °C) temperatures were injected into an environmental chamber and an oxidation flow reactor to simulate varying degrees of oxidative aging while measuring their gas- and aerosol-phase oxidation products. Secondary OA formation was observed via both self-nucleation and condensation, with chemical properties dependent on asphalt temperature and reaction conditions. The chemical composition of less-aged asphalt-related OA observed in outdoor and laboratory measurements was similar to OA from other petrochemical-based sources and hydrocarbon-like OA source factors observed via AMS in previous urban studies. The composition of aged OA varied with the degree of oxidation, similar to oxidized OA factors observed in ambient air. Taken together, these field and laboratory observations suggest that contributions to urban OA during and after application may be challenging to deconvolve from other traditional sources in ambient measurements. 
    more » « less
  3. Abstract. This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCPs). Meteorology is well predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical products, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well predicted despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well predicted, while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated (VOC-sensitive), with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study. 
    more » « less
  4. Abstract Among the various environmental factors that affect isoprene emissions, drought has only been given limited attention. Four different drought response (DR) schemes were implemented in the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version 2.1), and the Community Multiscale Air Quality (CMAQ) model was applied to investigate the drought impacts on air quality during both drought and normal years in China. Generally, all DR schemes decrease isoprene emissions except for mild drought conditions. The significant decrease and even termination of isoprene emissions are predicted in South China under severe drought conditions. During the drought period, the DR scheme considering both mild and severe drought (SMD) improves the model performance especially in severe drought‐hit regions when compared with the Ozone Monitoring Instrument (OMI) averaged formaldehyde vertical column density (HCHO VCD). The results show that most of the DR schemes decrease simulated ozone (O3) and secondary organic aerosols (SOA) levels. For both O3and SOA, noticeable changes are predicted in the Sichuan Basin (5 ppb and 4 µg m−3for O3and SOA, respectively). This investigation is the first modeling study to investigate the impacts of isoprene drought response on air quality in China. 
    more » « less
  5. Ambient carbonyls are critical precursors of ozone (O3) and secondary organic aerosols (SOA). To better understand the pollution characteristics of carbonyls in Taiyuan, field samplings were conducted, and 13 carbonyls were detected in an urban site of Taiyuan for the four seasons. The total concentration of carbonyls in the atmosphere was 19.67 ± 8.56 μg/m3. Formaldehyde (7.70 ± 4.78 μg/m3), acetaldehyde (2.95 ± 1.20 μg/m3) and acetone (5.57 ± 2.41 μg/m3) were the dominant carbonyl compounds, accounting for more than 85% of the total carbonyls. The highest values for formaldehyde and acetone occurred in summer and autumn, respectively, and the lowest occurred in winter. The variations for acetaldehyde were not distinct in the four seasons. Formaldehyde and acetone levels increased obviously in the daytime and decreased at night, while acetaldehyde did not show significant diurnal variations. Higher temperature and stronger sunlight intensity could facilitate the photochemical reaction of volatile organic compounds (VOCs) and enhance the O3 levels in summer. Formaldehyde and acetaldehyde contributed 70–95% of carbonyls’ ozone formation potential (OFP) caused by carbonyls with the highest totals of 268.62 μg/m3 and 38.14 μg/m3, respectively. The highest concentrations of carbonyls from south and southwest winds in summer suggest that the coke industries in the southern Taiyuan Basin should be, firstly, controlled for the alleviation of ozone pollution. 
    more » « less