Plants balance their competing requirements for growth and stress tolerance via a sophisticated regulatory circuitry that controls responses to the external environments. We have identified a plant-specific gene, COST1 ( constitutively stressed 1 ), that is required for normal plant growth but negatively regulates drought resistance by influencing the autophagy pathway. An Arabidopsis thaliana cost1 mutant has decreased growth and increased drought tolerance, together with constitutive autophagy and increased expression of drought-response genes, while overexpression of COST1 confers drought hypersensitivity and reduced autophagy. The COST1 protein is degraded upon plant dehydration, and this degradation is reduced upon treatment with inhibitors of the 26S proteasome or autophagy pathways. The drought resistance of a cost1 mutant is dependent on an active autophagy pathway, but independent of other known drought signaling pathways, indicating that COST1 acts through regulation of autophagy. In addition, COST1 colocalizes to autophagosomes with the autophagosome marker ATG8e and the autophagy adaptor NBR1, and affects the level of ATG8e protein through physical interaction with ATG8e, indicating a pivotal role in direct regulation of autophagy. We propose a model in which COST1 represses autophagy under optimal conditions, thus allowing plant growth. Under drought, COST1 is degraded, enabling activation of autophagy and suppression of growth to enhance drought tolerance. Our research places COST1 as an important regulator controlling the balance between growth and stress responses via the direct regulation of autophagy.
more »
« less
Golgi‐localized MORN1 promotes lipid droplet abundance and enhances tolerance to multiple stresses in Arabidopsis
Abstract Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified aMembrane Occupation and Recognition Nexus 1(MORN1) gene as a contributor to natural variations of stress tolerance through genome‐wide association study inArabidopsis thaliana. Characterization of its loss‐of‐function mutant and natural variants revealed that theMORN1gene is a positive regulator of plant growth, disease resistance, cold tolerance, and heat tolerance. The MORN1 protein is associated with the Golgi and is also partly associated with LD. Protein truncations that disrupt these associations abolished the biological function of the MORN1 protein. Furthermore, theMORN1gene is a positive regulator of LD abundance, and its role in LD number regulation and stress tolerance is highly linked. Therefore, this study identifies MORN1 as a positive regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of plant growth and stress responses.
more »
« less
- Award ID(s):
- 1946174
- PAR ID:
- 10493771
- Publisher / Repository:
- Journal of Integrative Plant Biology
- Date Published:
- Journal Name:
- Journal of Integrative Plant Biology
- Volume:
- 65
- Issue:
- 8
- ISSN:
- 1672-9072
- Page Range / eLocation ID:
- 1890 to 1903
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grownArabidopsisseedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes asSaltRoot:shootRatioRegulatorGene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize thatSR3Gexpression is modulated byWRKY75transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity ofwrky75mutant is completely diminished when it is combined withsr3gmutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.more » « less
-
Abstract Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf‐like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER‐to‐nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system‐level regulatory mechanisms that collectively fine‐tune ethylene responses to optimize plant growth, development, and stress adaptation.more » « less
-
O'Toole, George (Ed.)ABSTRACT Bacterial plant pathogens adjust their gene expression programs in response to environmental signals and host-derived compounds. This ensures that virulence genes or genes encoding proteins, which promote bacterial fitness in a host environment, are expressed only when needed. Such regulation is in the purview of transcription factors, many of which belong to the ubiquitous multiple antibiotic resistance regulator (MarR) protein family. PecS proteins constitute a subset of this large protein family. PecS has likely been distributed by horizontal gene transfer, along with the divergently encoded efflux pump PecM, suggesting its integration into existing gene regulatory networks. Here, we discuss the roles of PecS in the regulation of genes associated with virulence and fitness of bacterial plant pathogens. A comparison of phenotypes and differential gene expression associated with the disruption of pecS shows that functional consequences of PecS integration into existing transcriptional networks are highly variable, resulting in distinct PecS regulons. Although PecS universally binds to the pecS-pecM intergenic region to repress the expression of both genes, binding modes differ. A particularly relaxed sequence preference appears to apply for Dickeya dadantii PecS, perhaps to optimize its integration as a global regulator and regulate genes ancestral to the acquisition of pecS-pecM. Even inducing ligands for PecS are not universally conserved. It appears that PecS function has been optimized to match the unique regulatory needs of individual bacterial species and that its roles must be appreciated in the context of the regulatory networks into which it was recruited.more » « less
-
SUMMARY Extreme dryness is lethal for nearly all plants, excluding the so‐called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome‐level assemblies and improved genome annotations of twoSelaginellaspecies with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister‐group comparative genomics integrating multi‐omics data. Our findings indicate thatSelaginellaevolved VDT through the expansion of some stress protection‐related gene families and the contraction of senescence‐related genes. Comparative analyses revealed that desiccation‐tolerantSelaginellaspecies employ a combination of constitutive and inducible protection mechanisms to survive desiccation. We show that transcriptional priming of stress tolerance‐related genes and accumulation of flavonoids in unstressed plants are hallmarks of VDT inSelaginella. During water loss, the resurrectionSelaginellainduces phospholipids and glutathione metabolism, responses that are missing in the desiccation‐sensitive species. Additionally, gene regulatory network analyses indicate the suppression of growth processes as a major component of VDT. This study presents novel perspectives on how gene dosage impacts crucial protective mechanisms and the regulation of central processes to survive extreme dehydration.more » « less
An official website of the United States government

