skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective medium metasurfaces using nanoimprinting of the refractive index: design, performance, and predictive tolerance analysis
Production of flat optics incorporating subwavelength features, particularly at visible frequencies, remains a significant challenge. Here, we establish a framework for the design of effective medium metasurfaces (EMM), relying on nanoimprinting of mesoporous silicon to realize a patterned refractive indexn(x,y) corresponding to an arbitrary transmitted phase profileϕ(x,y). The method is used to design the stamp profile required to produce a Fresnel lens and the theoretical performance of the metalens is examined using the finite-difference time-domain method. Additionally, we demonstrate neural network aided Monte Carlo analysis as a method to model the effects of metasurface fabrications errors on EMM performance and process yield.  more » « less
Award ID(s):
2047015
PAR ID:
10494003
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
14
Issue:
4
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 847
Size(s):
Article No. 847
Sponsoring Org:
National Science Foundation
More Like this
  1. A new lens capability for three-dimensional (3D) focal control is presented using an optofluidic system consisting ofn × narrayed liquid prisms. Each prism module contains two immiscible liquids in a rectangular cuvette. Using the electrowetting effect, the shape of the fluidic interface can be rapidly adjusted to create its straight profile with the prism’s apex angle. Consequently, an incoming ray is steered at the tilted interface due to the refractive index difference between two liquids. To achieve 3D focal control, individual prisms in the arrayed system are simultaneously modulated, allowing incoming light rays to be spatially manipulated and converged on a focal point located atPfocal(fx,fy,fz) in 3D space. Analytical studies were conducted to precisely predict the prism operation required for 3D focal control. Using three liquid prisms positioned on thex-,y-, and 45°-diagonal axes, we experimentally demonstrated 3D focal tunability of the arrayed optofluidic system, achieving focal tuning along lateral, longitudinal, and axial directions as wide as 0 ≤ fx ≤ 30 mm, 0 ≤ fy ≤ 30 mm, and 500 mm ≤ fz ≤ ∞. This focal tunability of the arrayed system allows for 3D control of the lens’s focusing power, which could not be attained by solid-type optics without the use of bulky and complex mechanical moving components. This innovative lens capability for 3D focal control has potential applications in eye-movement tracking for smart displays, autofocusing of smartphone cameras, or solar tracking for smart photovoltaic systems. 
    more » « less
  2. Information bottleneck (IB) is a technique for extracting information in one random variable X that is relevant for predicting another random variable Y. IB works by encoding X in a compressed “bottleneck” random variable M from which Y can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete X and Y with small state spaces, and continuous X and Y with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous X and Y, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed “variational IB” method on several real-world datasets. 
    more » « less
  3. Abstract Localized atomistic disorder in halide‐based solid electrolytes (SEs) can be leveraged to boost Li+mobility. In this study, Li+transport in structurally modified Li3HoCl6, via Brintroduction and Li+deficiency, is explored. The optimized Li3‐3yHo1+yCl6‐xBrxachieves an ionic conductivity of 3.8 mS cm−1at 25 °C, the highest reported for holmium halide materials.6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+motional rate neighboring 116 MHz. X‐ray diffraction analyses reveal mixed‐anion‐induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho‐free planes with favorable energetics for Li+migration. Bond valence site energy analysis highlights preferred Li+transport pathways, particularly in structural planes devoid of Ho3+blocking effects. Molecular dynamics simulations corroborate enhanced Li+diffusion with Brintroduction into Li3HoCl6. Li‐Ho electrostatic repulsions in the (001) plane presumably drive Li+diffusion into the Ho‐free (002) layer, enabling rapid intraplanar Li+motion and exchange between the 2d and 4h sites. Li3‐3yHo1+yCl6‐xBrxalso demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high‐performance fast ion conductors for all‐solid‐state batteries. 
    more » « less
  4. We study the query complexity of finding the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)in two-player zero-sum matrix games. Fearnley and Savani [18] showed that for any randomized algorithm, there exists ann×ninput matrix where it needs to queryΩ(n2) entries in expectation to compute asingleNash equilibrium. On the other hand, Bienstock et al. [5] showed that there is a special class of matrices for which one can queryO(n) entries and compute its set of all Nash equilibria. However, these results do not fully characterize the query complexity of finding the set of all Nash equilibria in two-player zero-sum matrix games. In this work, we characterize the query complexity of finding the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)in terms of the number of rowsnof the input matrix\(A \in \mathbb {R}^{n \times n} \), row support size\(k_1 := |\bigcup \limits _{x \in \mathcal {X}_\ast } \text{supp}(x)| \), and column support size\(k_2 := |\bigcup \limits _{y \in \mathcal {Y}_\ast } \text{supp}(y)| \). We design a simple yet non-trivial randomized algorithm that returns the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)by querying at mostO(nk5· polylog(n)) entries of the input matrix\(A \in \mathbb {R}^{n \times n} \)in expectation, wherek≔ max{k1,k2}. This upper bound is tight up to a factor of poly(k), as we show that for any randomized algorithm, there exists ann×ninput matrix with min {k1,k2} = 1, for which it needs to queryΩ(nk) entries in expectation in order to find the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \). 
    more » « less
  5. Perovskite solar cells (PSCs) have attracted significant research efforts due to their remarkable performance. However, most perovskite films are prepared by the antisolvent method which is not suitable for practical applications. Herein, a (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3(CsFAMA) perovskite film fabrication technique is developed using solvent volatilization without any antisolvents. The films are formed through recrystallization via the intermediate phase CsMAFAPbIxClyBrzduring annealing, leading to high‐quality perovskite films. The perovskite growth mechanism is investigated in terms of controlling the amount of formamidinium iodide and methylammonium chloride in the precursor solutions. The oriental growth of the films via the intermediate phase is confirmed by the grazing‐incidence wide‐angle X‐ray scattering measurements. The photovoltaic properties of the perovskite films are investigated. The PSCs based on the films fabricated using the method exhibit a high efficiency of 20.6%. The method developed in this work is based on solvent volatilization, which exhibits significant potential in high reproducibility, facile operation, and large‐scale production. 
    more » « less