Abstract Electrospray deposition of copper salt‐containing microdroplets onto the liquid surface of an electrically grounded reaction mixture leads to the formation of Cu nanoclusters, which then catalyze the azide‐alkyne cycloaddition (AAC) reaction to form triazoles. This method of in situ nanocatalyst preparation provided 17 times higher catalytic activity compared to that in the conventional catalytic reaction. The gentle landing of the Cu‐containing droplets onto the liquid surface forms a thin film of catalyst which promotes the heterogeneous AAC reaction while showing diffusion‐controlled kinetics. UV‐vis spectral characterization confirms that the catalyst is comprised of Cu nanoclusters. This unique catalytic strategy was validated using several substrates and the corresponding products were confirmed by tandem mass spectrometry (MS/MS) analysis.
more »
« less
Filament formation drives catalysis by glutaminase enzymes important in cancer progression
Abstract The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the ‘glutamine addiction’ of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an ‘activation loop’ to assume a specific conformation that works together with a ‘lid’ to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10494015
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Here, we investigate an unusual antiviral mechanism developed in the bacterium Streptomyces griseus . SgrAI is a type II restriction endonuclease that forms run-on oligomer filaments when activated and possesses both accelerated DNA cleavage activity and expanded DNA sequence specificity. Mutations disrupting the run-on oligomer filament eliminate the robust antiphage activity of wild-type SgrAI, and the observation that even relatively modest disruptions completely abolish this anti-viral activity shows that the greater speed imparted by the run-on oligomer filament mechanism is critical to its biological function. Simulations of DNA cleavage by SgrAI uncover the origins of the kinetic advantage of this newly described mechanism of enzyme regulation over more conventional mechanisms, as well as the origin of the sequestering effect responsible for the protection of the host genome against damaging DNA cleavage activity of activated SgrAI. IMPORTANCE This work is motivated by an interest in understanding the characteristics and advantages of a relatively newly discovered enzyme mechanism involving filament formation. SgrAI is an enzyme responsible for protecting against viral infections in its host bacterium and was one of the first such enzymes shown to utilize such a mechanism. In this work, filament formation by SgrAI is disrupted, and the effects on the speed of the purified enzyme as well as its function in cells are measured. It was found that even small disruptions, which weaken but do not destroy filament formation, eliminate the ability of SgrAI to protect cells from viral infection, its normal biological function. Simulations of enzyme activity were also performed and show how filament formation can greatly speed up an enzyme’s activation compared to that of other known mechanisms, as well as to better localize its action to molecules of interest, such as invading phage DNA.more » « less
-
null (Ed.)Silica-encapsulated gold core@shell nanoparticles (Au@SiO 2 CSNPs) were synthesized via a tunable bottom-up procedure to catalyze the aerobic oxidation of benzyl alcohol. The nanoparticles exhibit a mesoporous shell which enhances selectivity by inhibiting the formation of larger species. Adding potassium carbonate to the reaction increased conversion from 17.3 to 60.4% while decreasing selectivity from 98.4 to 75.0%. A gold nanoparticle control catalyst with a similar gold surface area took 6 times as long to reach the same conversion, achieving only 49.4% selectivity. These results suggest that the pore size distribution within the inert silica shell of Au@SiO 2 CSNPs inhibits the formation of undesired products to facilitate the selective oxidation of benzaldehyde despite a basic environment. A smaller activation energy, mass transport analysis, and mesopore distribution together suggest the Au@SiO 2 CSNP catalyst demonstrates higher activity through beneficial in-pore orientation, promoting a lower activation energy mechanistic pathway. Taken together, this is a promising catalytic structure to optimize oxidation chemistries, without leveraging surface-interacting factors like chelating agents or active support surfaces.more » « less
-
Abstract Cas9 is a metal-dependent nuclease that has revolutionized gene editing across diverse cells and organisms exhibiting varying ion uptake, metabolism, and concentrations. However, how divalent metals impact its catalytic function, and consequently its editing efficiency in different cells, remains unclear. Here, extensive molecular simulations, Markov State Models, biochemical and NMR experiments, demonstrate that divalent metals – Mg2+, Ca2+, and Co2+– promote activation of the catalytic HNH domain by binding within a dynamically forming divalent metal binding pocket (DBP) at the HNH-RuvC interface. Mutations in DBP residues disrupt HNH activation and impair the coupled catalytic activity of both nucleases, identifying this cryptic DBP as a key regulator of Cas9’s metal-dependent activity. The ionic strength thereby promotes Cas9’s conformational activation, while its catalytic activity is metal-specific. These findings are critical to improving the metal-dependent function of Cas9 and its use for genome editing in different cells and organisms.more » « less
-
null (Ed.)Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates.more » « less
An official website of the United States government
