skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adiabatic ionization energies of RuC, RhC, OsC, IrC, and PtC
The ionization energies (IEs) of RuC, RhC, OsC, IrC, and PtC are assigned by the measurement of their two-photon ionization thresholds. Although late transition metal–carbon bonds are of major importance in organometallic chemistry and catalysis, accurate and precise fundamental thermochemical data on these chemical bonds are mainly lacking in the literature. Based on their two-photon ionization thresholds, in this work, we assign IE(RuC) = 7.439(40) eV, IE(RhC) = 7.458(32) eV, IE(OsC) = 8.647(25) eV, IE(IrC) = 8.933(74) eV, and IE(PtC) = 9.397(32) eV. These experimentally derived IEs are further confirmed through quantum chemical calculations using coupled-cluster single double perturbative triple methods that are extrapolated to the complete basis set limit using a three-parameter mixed Gaussian/exponential extrapolation scheme and corrected for spin–orbit effects using a semiempirical method. The electronic structure and chemical bonding of these MC species are discussed in the context of these ionization energy measurements. The IEs of RuC, RhC, OsC, and IrC closely mirror the IEs of the corresponding transition metal atoms, suggesting that for these species, the (n + 1)s electrons of the transition metals are not significantly involved in chemical bonding.  more » « less
Award ID(s):
2305293
PAR ID:
10494033
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
8
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-photon ionization thresholds of RuB, RhB, OsB, IrB, and PtB have been measured using resonant two-photon ionization spectroscopy in a jet-cooled molecular beam and have been used to derive the adiabatic ionization energies of these molecules. From the measured two-photon ionization thresholds, IE(RuB) = 7.879(9) eV, IE(RhB) = 8.234(10) eV, IE(OsB) = 7.955(9) eV, IE(IrB) = 8.301(15) eV, and IE(PtB) = 8.524(10) eV have been assigned. By employing a thermochemical cycle, cationic bond dissociation energies of these molecules have also been derived, giving D0(Ru+–B) = 4.297(9) eV, D0(Rh+–B) = 4.477(10) eV, D0(Os–B+) = 4.721(9) eV, D0(Ir–B+) = 4.925(18) eV, and D0(Pt–B+) = 5.009(10) eV. The electronic structures of the resulting cationic transition metal monoborides (MB+) have been elucidated using quantum chemical calculations. Periodic trends of the MB+ molecules and comparisons to their neutral counterparts are discussed. The possibility of quadruple chemical bonds in all of these cationic transition metal monoborides is also discussed. 
    more » « less
  2. Resonant two-photon ionization (R2PI) spectroscopy has been used to measure the bond dissociation energies (BDEs) of the diatomic transition metal nitrides ScN, TiN, YN, MoN, RuN, RhN, HfN, OsN, and IrN. Of these, the BDEs of only TiN and HfN had been previously measured. Due to the many ways electrons can be distributed among the d orbitals, these molecules possess an extremely high density of electronic states near the ground separated atom limit. Spin–orbit and nonadiabatic interactions couple these states quite effectively, so that the molecules readily find a path to dissociation when excited above the ground separated atom limit. The result is a sharp drop in ion signal in the R2PI spectrum when the molecule is excited above this limit, allowing the BDE to be readily measured. Using this method, the values D0(ScN) = 3.905(29) eV, D0(TiN) = 5.000(19) eV, D0(YN) = 4.125(24) eV, D0(MoN) = 5.220(4) eV, D0(RuN) = 4.905(3) eV, D0(RhN) = 3.659(32) eV, D0(HfN) = 5.374(4) eV, D0(OsN) = 5.732(3) eV, and D0(IrN) = 5.115(4) eV are obtained. To support the experimental findings, ab initio coupled-cluster calculations extrapolated to the complete basis set limit (CBS) were performed. With a semiempirical correction for spin–orbit effects, these coupled-cluster single double triple-CBS calculations give a mean absolute deviation from the experimental BDE values of 0.20 eV. A discussion of the periodic trends, summaries of previous work, and comparisons to isoelectronic species is also provided. 
    more » « less
  3. Lian, Tianquan (Ed.)
    In the present work, the electronic structure and chemical bonding of the MoC X3Σ− ground state and the six lowest excited states, A3Δ, a1Γ, b5Σ−, c1Δ, d1Σ+, and e5Π, have been investigated in detail using multireference configuration interaction methods and basis sets, including relativistic effective core potentials. In addition, scalar relativistic effects have been considered in the second order Douglas–Kroll–Hess approximation, while spin–orbit coupling has also been calculated. Five of the investigated states, X3Σ−, A3Δ, a1Γ, c1Δ, and d1Σ+, present quadruple σ2σ2π2π2 bonds. Experimentally, the predissociation threshold of MoC was measured using resonant two-photon ionization spectroscopy, allowing for a precise measurement of the dissociation energy of the ground state. Theoretically, the complete basis set limit of the calculated dissociation energy with respect to the atomic ground state products, including corrections for scalar relativistic effects, De(D0), is computed as 5.13(5.06) eV, in excellent agreement with our measured value of D0(MoC) of 5.136(5) eV. Furthermore, the calculated dissociation energies of the states having quadruple bonds with respect to their adiabatic atomic products range from 6.22 to 7.23 eV. The excited electronic states A3Δ2 and c1Δ2 are calculated to lie at 3899 and 8057 cm−1, also in excellent agreement with the experimental values of DaBell et al., 4002.5 and 7834 cm−1, respectively. 
    more » « less
  4. We present an investigation on the structures and chemical bonding of two Bi-doped boron clusters BiBn− (n = 4, 5) using photoelectron spectroscopy and theoretical calculations. The electron affinities of BiB4 and BiB5 are measured to be 2.22(2) eV and 2.61(2) eV, respectively. Well-resolved photoelectron spectra are obtained and used to compare with theoretical calculations to verify the structures of BiB4− and BiB5−. Both clusters adopt planar structures with the Bi atom bonded to the periphery of the planar Bn moiety. Chemical bonding analyses reveal that the Bn moiety maintains σ and π double-aromaticity. The Bi atom is found to induce relatively small structural changes to the Bn moiety, very different from transition metal-doped boron clusters. 
    more » « less
  5. p-Type molecular dopants are a class of high electron affinity (EA) molecules used to ionize organic electronic materials for device applications. It is extremely challenging to ionize high-performance, high-ionization energy (IE) polymers because the dopant molecule needs to be compatible with solution processing. Here, we describe the synthesis and characterization of two new solution processable molecular dopants with the highest EA values yet reported. These molecules, based on the parent hexacyanotrimethylenecyclopropane (CN6-CP) structure, achieve solubility by the substitution of one or more of the cyano groups with esters, which both reduces the volatility relative to CN6-CP and allows for solution processing. The efficacy of these new molecular dopants, which have EA values up to 5.75 eV with respect to vacuum, was tested by performing sequential solution doping experiments with a series of thiophene and alternating diketopyrrolopyrrole polymers with IEs ranging from 5.10 eV to 5.63 eV. For completeness, the new dopant results are compared to a previously reported tri-ester substituted CN6-CP analogue with an EA of 5.50 EV. The increased EA of these stronger dopants induces a 10–100 fold increase in film conductivity and saturation of the conductivity at 15–100 S cm −1 for almost all polymers tested. These new dopant structures enable controlled solution doping at high doping levels for most alternating co-polymers of interest to the organic electronics community. 
    more » « less