Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded. The result is a sharp predissociation threshold that is identified as the BDE. The high BDEs of these five molecules required the use of two tunable lasers to reach the BDE. Measured values of D0(RuC) = 6.312(2) eV, D0(RhC) = 6.007(2) eV, D0(OsC) = 6.427(2) eV, D0(IrC) = 6.404(2) eV, and D0(PtC) = 6.260(2) eV were obtained, where the value is parentheses represents the estimated error limit in units of the last quoted digit. A new electronic state of PtC, tentatively assigned as the c(_^3)Σ_1^+ state, has been found with T0 = 22442 cm-1. These BDEs are combined with recently measured ionization energies to obtain BDEs of the associated cations. Electronic structure calculations are also reported to investigate the chemical bonding in more detail. Trends in the BDEs of the diatomic transition metal carbides are also discussed.
more »
« less
Adiabatic ionization energies of RuC, RhC, OsC, IrC, and PtC
The ionization energies (IEs) of RuC, RhC, OsC, IrC, and PtC are assigned by the measurement of their two-photon ionization thresholds. Although late transition metal–carbon bonds are of major importance in organometallic chemistry and catalysis, accurate and precise fundamental thermochemical data on these chemical bonds are mainly lacking in the literature. Based on their two-photon ionization thresholds, in this work, we assign IE(RuC) = 7.439(40) eV, IE(RhC) = 7.458(32) eV, IE(OsC) = 8.647(25) eV, IE(IrC) = 8.933(74) eV, and IE(PtC) = 9.397(32) eV. These experimentally derived IEs are further confirmed through quantum chemical calculations using coupled-cluster single double perturbative triple methods that are extrapolated to the complete basis set limit using a three-parameter mixed Gaussian/exponential extrapolation scheme and corrected for spin–orbit effects using a semiempirical method. The electronic structure and chemical bonding of these MC species are discussed in the context of these ionization energy measurements. The IEs of RuC, RhC, OsC, and IrC closely mirror the IEs of the corresponding transition metal atoms, suggesting that for these species, the (n + 1)s electrons of the transition metals are not significantly involved in chemical bonding.
more »
« less
- Award ID(s):
- 2305293
- PAR ID:
- 10494033
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 160
- Issue:
- 8
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-photon ionization thresholds of RuB, RhB, OsB, IrB, and PtB have been measured using resonant two-photon ionization spectroscopy in a jet-cooled molecular beam and have been used to derive the adiabatic ionization energies of these molecules. From the measured two-photon ionization thresholds, IE(RuB) = 7.879(9) eV, IE(RhB) = 8.234(10) eV, IE(OsB) = 7.955(9) eV, IE(IrB) = 8.301(15) eV, and IE(PtB) = 8.524(10) eV have been assigned. By employing a thermochemical cycle, cationic bond dissociation energies of these molecules have also been derived, giving D0(Ru+–B) = 4.297(9) eV, D0(Rh+–B) = 4.477(10) eV, D0(Os–B+) = 4.721(9) eV, D0(Ir–B+) = 4.925(18) eV, and D0(Pt–B+) = 5.009(10) eV. The electronic structures of the resulting cationic transition metal monoborides (MB+) have been elucidated using quantum chemical calculations. Periodic trends of the MB+ molecules and comparisons to their neutral counterparts are discussed. The possibility of quadruple chemical bonds in all of these cationic transition metal monoborides is also discussed.more » « less
-
The rhenium-containing molecules ReC, ReN, ReO, ReS, and ReC2 have been investigated using a pulsed laser ablation supersonic beam molecular source in resonant two-photon ionization experiments with time-of-flight mass spectrometric detection. Sharp predissociation thresholds have been observed, allowing precise bond dissociation energies (BDEs) to be measured as D0(ReC) = 5.731(3) eV, D0(ReN) = 5.635(3) eV, D0(ReO) = 5.510(3) eV, D0(ReS) = 3.947(3) eV, and D0(Re–C2) = 5.359(3) eV. The threshold for two-photon ionization was also measured for ReC, ReN, and ReO, providing ionization energies (IEs) of IE(ReC) = 8.425(12) eV, IE(ReN) = 8.193(20) eV, and IE(ReO) = 8.561(11) eV. These are the first measurements of these thermochemical quantities to be reported in the literature. The combination of BDEs and IEs allowed the BDEs of the cations ReC+, ReN+, and ReO+ to be determined via a thermochemical cycle as D0(Re+-C) = 5.140(12) eV, D0(Re+-N) = 5.275(20) eV, and D0(Re+-O) = 4.783(11) eV. In addition, computations of these thermochemical values were performed using density functional theory [B3LYP/aug-cc-pVQZ(-PP)] to determine the ground states and their geometric parameters. These were further studied at the CCSD(T) level with extrapolation to the complete basis set limit using aug-cc-pVXZ(-PP) basis sets (X = 3, 4, 5) to obtain computational values of the BDEs and IEs as well. The high-level super correlation consistent composite approach (s-ccCA) was also utilized, providing an additional approach for the prediction of thermochemical values. The electronic structure of the molecules is discussed, along with the periodic trends as the ligand is varied.more » « less
-
Resonant two-photon ionization (R2PI) spectroscopy has been used to measure the bond dissociation energies (BDEs) of the diatomic transition metal nitrides ScN, TiN, YN, MoN, RuN, RhN, HfN, OsN, and IrN. Of these, the BDEs of only TiN and HfN had been previously measured. Due to the many ways electrons can be distributed among the d orbitals, these molecules possess an extremely high density of electronic states near the ground separated atom limit. Spin–orbit and nonadiabatic interactions couple these states quite effectively, so that the molecules readily find a path to dissociation when excited above the ground separated atom limit. The result is a sharp drop in ion signal in the R2PI spectrum when the molecule is excited above this limit, allowing the BDE to be readily measured. Using this method, the values D0(ScN) = 3.905(29) eV, D0(TiN) = 5.000(19) eV, D0(YN) = 4.125(24) eV, D0(MoN) = 5.220(4) eV, D0(RuN) = 4.905(3) eV, D0(RhN) = 3.659(32) eV, D0(HfN) = 5.374(4) eV, D0(OsN) = 5.732(3) eV, and D0(IrN) = 5.115(4) eV are obtained. To support the experimental findings, ab initio coupled-cluster calculations extrapolated to the complete basis set limit (CBS) were performed. With a semiempirical correction for spin–orbit effects, these coupled-cluster single double triple-CBS calculations give a mean absolute deviation from the experimental BDE values of 0.20 eV. A discussion of the periodic trends, summaries of previous work, and comparisons to isoelectronic species is also provided.more » « less
-
Lian, Tianquan (Ed.)In the present work, the electronic structure and chemical bonding of the MoC X3Σ− ground state and the six lowest excited states, A3Δ, a1Γ, b5Σ−, c1Δ, d1Σ+, and e5Π, have been investigated in detail using multireference configuration interaction methods and basis sets, including relativistic effective core potentials. In addition, scalar relativistic effects have been considered in the second order Douglas–Kroll–Hess approximation, while spin–orbit coupling has also been calculated. Five of the investigated states, X3Σ−, A3Δ, a1Γ, c1Δ, and d1Σ+, present quadruple σ2σ2π2π2 bonds. Experimentally, the predissociation threshold of MoC was measured using resonant two-photon ionization spectroscopy, allowing for a precise measurement of the dissociation energy of the ground state. Theoretically, the complete basis set limit of the calculated dissociation energy with respect to the atomic ground state products, including corrections for scalar relativistic effects, De(D0), is computed as 5.13(5.06) eV, in excellent agreement with our measured value of D0(MoC) of 5.136(5) eV. Furthermore, the calculated dissociation energies of the states having quadruple bonds with respect to their adiabatic atomic products range from 6.22 to 7.23 eV. The excited electronic states A3Δ2 and c1Δ2 are calculated to lie at 3899 and 8057 cm−1, also in excellent agreement with the experimental values of DaBell et al., 4002.5 and 7834 cm−1, respectively.more » « less
An official website of the United States government

