skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Distributed Edge Computing System for Vehicle Communication
The development of communication technologies in edge computing has fostered progress across various applications, particularly those involving vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Enhanced infrastructure has improved data transmission network availability, promoting better connectivity and data collection from IoT devices. A notable IoT application is with the Intelligent Transportation System (ITS). IoT technology integration enables ITS to access a variety of data sources, including those pertaining to weather and road conditions. Real-time data on factors like temperature, humidity, precipitation, and friction contribute to improved decision-making models. Traditionally, these models are trained at the cloud level, which can lead to communication and computational delays. However, substantial advancements in cloud-to-edge computing have decreased communication relays and increased computational distribution, resulting in faster response times. Despite these benefits, the developments still largely depend on central cloud sources for computation due to restrictions in computational and storage capacity at the edge. This reliance leads to duplicated data transfers between edge servers and cloud application servers. Additionally, edge computing is further complicated by data models predominantly based on data heuristics. In this paper, we propose a system that streamlines edge computing by allowing computation at the edge, thus reducing latency in responding to requests across distributed networks. Our system is also designed to facilitate quick updates of predictions, ensuring vehicles receive more pertinent safety-critical model predictions. We will demonstrate the construction of our system for V2V and V2I applications, incorporating cloud-ware, middleware, and vehicle-ware levels.  more » « less
Award ID(s):
1932509
PAR ID:
10494088
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
INSTICC
Date Published:
Journal Name:
Proceedings of the 12th International Conference on Data Science, Technology, and Applications
Format(s):
Medium: X
Location:
Rome, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider a multipoint channel charting (MPCC) algorithm for radio resource management (RRM) in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication systems. A massive MIMO (mMIMO) infrastructure network performs logical localization of vehicles to a MPCC, based on V2I communication signals. Combining logical distances given by channel charting with V2V measurements, the network trains a function to predict the quality of a direct V2V communication link from observed V2I communication signals. In MPCC, the network uses machine learning techniques to learn a logical radio map from V2I channel state information (CSI) samples transmitted from unknown locations. The network extracts CSI features, constructs a dissimilarity matrix between CSI samples, and performs dimensional reduction of the CSI feature space. Here, we use Laplacian Eigenmaps (LE) for dimensional reduction. The resulting MPCC is a two-dimensional map where the spatial distance between a pair of vehicles is closely approximated by the distance in the MPCC. In addition to V2I CSI, the network acquires V2V channel quality information for vehicles in the training set and develops a link quality predictor. MPCC provides a mapping for any vehicle location in the training set. To use MPCC for cognitive RRM of V2I and V2V communications, network management has to find logical MPCC locations for vehicles not in the training set, based on newly acquired V2I CSI measurements. For this, we develop an extension of LE-based MPCC to out-of-sample CSI samples. We evaluate the performance of link quality prediction for V2V communications in a mMIMO millimeter-wave scenario, in terms of the relative error of the predicted outage probability. 
    more » « less
  2. Edge computing is an emerging computing paradigm representing decentralized and distributed information technology architecture [1] . The demand for edge computing is primarily driven by the increased number of smart devices and the Internet of Things (IoT) that generate and transmit a substantial amount of data, that would otherwise be stored on cloud computing services. The edge architecture enables data and computation to be performed in close proximity to users and data sources and acts as the pathway toward upstream data centers [2] . Rather than sending data to the cloud for processing, the analysis and work is done closer to where the source of the data is generated ( Figure 1 ). Edge services leverage local infrastructure resources allowing for reduced network latency, improved bandwidth utilization, and better energy efficiency compared to cloud computing. 
    more » « less
  3. The emergence of Internet of Things (IoT) is participating to the increase of data-and energy-hungry applications. As connected devices do not yet offer enough capabilities for sustaining these applications, users perform computation offloading to the cloud. To avoid network bottlenecks and reduce the costs associated to data movement, edge cloud solutions have started being deployed, thus improving the Quality of Service. In this paper, we advocate for leveraging on-site renewable energy production in the different edge cloud nodes to green IoT systems while offering improved QoS compared to core cloud solutions. We propose an analytic model to decide whether to offload computation from the objects to the edge or to the core Cloud, depending on the renewable energy availability and the desired application QoS. This model is validated on our application use-case that deals with video stream analysis from vehicle cameras. 
    more » « less
  4. null (Ed.)
    Due to the proliferation of Internet of Things (IoT) and application/user demands that challenge communication and computation, edge computing has emerged as the paradigm to bring computing resources closer to users. In this paper, we present Whispering, an analytical model for the migration of services (service offloading) from the cloud to the edge, in order to minimize the completion time of computational tasks offloaded by user devices and improve the utilization of resources. We also empirically investigate the impact of reusing the results of previously executed tasks for the execution of newly received tasks (computation reuse) and propose an adaptive task offloading scheme between edge and cloud. Our evaluation results show that Whispering achieves up to 35% and 97% (when coupled with computation reuse) lower task completion times than cases where tasks are executed exclusively at the edge or the cloud. 
    more » « less
  5. Abstract Connected autonomous intelligent agents (AIA) can improve intersection performance and resilience for the transportation infrastructure. An agent is an autonomous decision maker whose decision making is determined internally but may be altered by interactions with the environment or with other agents. Implementing agent-based modeling techniques to advance communication for more appropriate decision making can benefit autonomous vehicle technology. This research examines vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and infrastructure to infrastructure (I2I) communication strategies that use gathered data to ensure these agents make appropriate decisions under operational circumstances. These vehicles and signals are modeled to adapt to the common traffic flow of the intersection to ultimately find an traffic flow that will minimizes average vehicle transit time to improve intersection efficiency. By considering each light and vehicle as an agent and providing for communication between agents, additional decision-making data can be transmitted. Improving agent based I2I communication and decision making will provide performance benefits to traffic flow capacities. 
    more » « less