skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: On the Elliptic Curve Cryptography for Privacy-Aware Secure ACO-AODV Routing in Intent-Based Internet of Vehicles for Smart Cities
Internet of Vehicles (IoV) in 5G is regarded as a backbone for intelligent transportation system in smart city, where vehicles are expected to communicate with drivers, with road-side wireless infrastructure, with other vehicles, with traffic signals and different city infrastructure using vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications. In IoV, the network topology changes based on drivers' destination, intent or vehicles' movements and road structure on which the vehicles travel. In IoV, vehicles are assumed to be equipped with computing devices to process data, storage devices to store data and communication devices to communicate with other vehicles or with roadside infrastructure (RSI). It is vital to authenticate data in IoV to make sure that legitimate data is being propagated in IoV. Thus, security stands as a vital factor in IoV. The existing literature contains some limitations for robust security in IoV such as high delay introduced by security algorithms, security without privacy, unreliable security and reduced overall communication efficiency. To address these issues, this paper proposes the Elliptic Curve Cryptography (ECC) based Ant Colony Optimization Ad hoc On-demand Distance Vector (ACO-AODV) routing protocol which avoids suspicious vehicles during message dissemination in IoV. Specifically, our proposed protocol comprises three components: i) certificate authority (CA) which maps vehicle's publicly available info such as number plates with cryptographic keys using ECC; ii) malicious vehicle (MV) detection algorithm which works based on trust level calculated using status message interactions; and iii) secure optimal path selection in an adaptive manner based on the intent of communications using ACO-AODV that avoids malicious vehicles. Experimental results illustrate that the proposed approach provides better results than the existing approaches.  more » « less
Award ID(s):
1828811
NSF-PAR ID:
10250658
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Intelligent Transportation Systems
ISSN:
1524-9050
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet of Things has become a predominant phenomenon in every sphere of smart life. Connected Cars and Vehicular Internet of Things, which involves communication and data exchange between vehicles, traffic infrastructure or other entities are pivotal to realize the vision of smart city and intelligent transportation. Vehicular Cloud offers a promising architecture wherein storage and processing capabilities of smart objects are utilized to provide on-the-fly fog platform. Researchers have demonstrated vulnerabilities in this emerging vehicular IoT ecosystem, where data has been stolen from critical sensors and smart vehicles controlled remotely. Security and privacy is important in Internet of Vehicles (IoV) where access to electronic control units, applications and data in connected cars should only be authorized to legitimate users, sensors or vehicles. In this paper, we propose an authorization framework to secure this dynamic system where interactions among entities is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant to IoV and discuss the need of vehicular clouds in this time and location sensitive environment. We outline approaches to different access control models which can be enforced at various layers of E-ACO architecture and in the authorization framework. Finally, we discuss use cases to illustrate access control requirements in our vision of cloud assisted connected cars and vehicular IoT, and discuss possible research directions. 
    more » « less
  2. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  3. null (Ed.)
    With the development of the emerging Connected Vehicle (CV) technology, vehicles can wirelessly communicate with traffic infrastructure and other vehicles to exchange safety and mobility information in real time. However, the integrated communication capability inevitably increases the attack surface of vehicles, which can be exploited to cause safety hazard on the road. Thus, it is highly desirable to systematically understand design-level flaws in the current CV network stack as well as in CV applications, and the corresponding security/safety consequences so that these flaws can be proactively discovered and addressed before large-scale deployment. In this paper, we design CVAnalyzer, a system for discovering design-level flaws for availability violations of the CV network stack, as well as quantifying the corresponding security/safety consequences. To achieve this, CVAnalyzer combines the attack discovery capability of a general model checker and the quantitative threat assessment capability of a probabilistic model checker. Using CVAnalyzer, we successfully uncovered 4 new DoS (Denial-of-Service) vulnerabilities of the latest CV network protocols and 14 new DoS vulnerabilities of two CV platoon management protocols. Our quantification results show that these attacks can have as high as 99% success rates, and in the worst case can at least double the delay in packet processing, violating the latency requirement in CV communication.We implemented and validated all attacks in a real-world testbed, and also analyzed the fundamental causes to propose potential solutions. We have reported our findings in the CV network protocols to the IEEE 1609 Working Group, and the group has acknowledged the discovered vulnerabilities and plans to adopt our solutions. 
    more » « less
  4. We tackle the atypical challenge of supporting postquantum cryptography (PQC) and its significant overhead in safety-critical vehicle-to-vehicle (V2V) communications, dealing with strict overhead and latency restrictions within the limited radio spectrum for V2V. For example, we show that the current use of spectrum to support signature verification in V2V makes it nearly impossible to adopt PQC. Accordingly, we propose a scheduling technique for message signing certificate transmissions (which we find are currently up to 93% redundant) that learns to adaptively reduce the use of radio spectrum. In combination, we design the first integration of PQC and V2V, which satisfies the above stringent constraints given the available spectrum. Specifically, we analyze the three PQ signature algorithms selected for standardization by NIST, as well as XMSS (RFC 8391), and propose a Partially Hybrid authentication protocol—a tailored fusion of classical cryptography and PQC—for use in the V2V ecosystem during the nascent transition period we outline towards fully PQ V2V. Our provably secure protocol efficiently balances security and performance, as demonstrated experimentally with software-defined radios (USRPs), commercial V2V devices, and road traffic and V2V simulators. We show our joint transmission scheduling optimization and Partially Hybrid design are scalable and reliable under realistic conditions, adding a negligible average delay (0.39 ms per message) against the current state-of-the-art. 
    more » « less
  5. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less