skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Elliptic Curve Cryptography for Privacy-Aware Secure ACO-AODV Routing in Intent-Based Internet of Vehicles for Smart Cities
Internet of Vehicles (IoV) in 5G is regarded as a backbone for intelligent transportation system in smart city, where vehicles are expected to communicate with drivers, with road-side wireless infrastructure, with other vehicles, with traffic signals and different city infrastructure using vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications. In IoV, the network topology changes based on drivers' destination, intent or vehicles' movements and road structure on which the vehicles travel. In IoV, vehicles are assumed to be equipped with computing devices to process data, storage devices to store data and communication devices to communicate with other vehicles or with roadside infrastructure (RSI). It is vital to authenticate data in IoV to make sure that legitimate data is being propagated in IoV. Thus, security stands as a vital factor in IoV. The existing literature contains some limitations for robust security in IoV such as high delay introduced by security algorithms, security without privacy, unreliable security and reduced overall communication efficiency. To address these issues, this paper proposes the Elliptic Curve Cryptography (ECC) based Ant Colony Optimization Ad hoc On-demand Distance Vector (ACO-AODV) routing protocol which avoids suspicious vehicles during message dissemination in IoV. Specifically, our proposed protocol comprises three components: i) certificate authority (CA) which maps vehicle's publicly available info such as number plates with cryptographic keys using ECC; ii) malicious vehicle (MV) detection algorithm which works based on trust level calculated using status message interactions; and iii) secure optimal path selection in an adaptive manner based on the intent of communications using ACO-AODV that avoids malicious vehicles. Experimental results illustrate that the proposed approach provides better results than the existing approaches.  more » « less
Award ID(s):
1828811
PAR ID:
10250658
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Intelligent Transportation Systems
ISSN:
1524-9050
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet of Things has become a predominant phenomenon in every sphere of smart life. Connected Cars and Vehicular Internet of Things, which involves communication and data exchange between vehicles, traffic infrastructure or other entities are pivotal to realize the vision of smart city and intelligent transportation. Vehicular Cloud offers a promising architecture wherein storage and processing capabilities of smart objects are utilized to provide on-the-fly fog platform. Researchers have demonstrated vulnerabilities in this emerging vehicular IoT ecosystem, where data has been stolen from critical sensors and smart vehicles controlled remotely. Security and privacy is important in Internet of Vehicles (IoV) where access to electronic control units, applications and data in connected cars should only be authorized to legitimate users, sensors or vehicles. In this paper, we propose an authorization framework to secure this dynamic system where interactions among entities is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant to IoV and discuss the need of vehicular clouds in this time and location sensitive environment. We outline approaches to different access control models which can be enforced at various layers of E-ACO architecture and in the authorization framework. Finally, we discuss use cases to illustrate access control requirements in our vision of cloud assisted connected cars and vehicular IoT, and discuss possible research directions. 
    more » « less
  2. Vehicles are becoming more intelligent and automated. To achieve higher automation levels, vehicles are being equipped with more and more sensors. High data rate connectivity seems critical to allow vehicles and road infrastructure exchanging all these sensor data to enlarge their sensing range and make better safety related decisions. Connectivity also enables other applications such as infotainment or high levels of traffic coordination. Current solutions for vehicular communications though do not support the gigabit-per-second data rates. This presentation makes the case that millimeter wave communication is the only viable approach for high bandwidth connected vehicles. The motivation and challenges associated with using mmWave for vehicle-to-vehicle and vehicle-to-infrastructure applications are highlighted. Examples from recent work are provided including new theoretical results that enable mmWave communication in high mobility scenarios and innovative architectural concepts like position and radar-aided communication. 
    more » « less
  3. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  4. Modern advances in unmanned aerial vehicle (UAV) technology have widened the scope of commercial and military applications. However, the increased dependency on wireless communications exposes UAVs to potential attacks and introduces new threats, especially from UAVs designed with the malicious intent of targeting vital infrastructures. Significant efforts have been made from researchers and other United States (U.S.) Department of Defense (DoD) agencies for developing countermeasures for detection, interception, or destruction of the malicious UAVs. One promising countermeasure is the use of a counter UAV (CUAV) swarm to detect, track, and neutralize the malicious UAV. This paper aims to recognize the state-of-the-art swarm intelligence algorithms for achieving cooperative capture of a mobile target UAV. The major design and implementation challenges for swarm control, algorithm architecture, and safety protocols are considered. A prime challenge for UAV swarms is a robust communication infrastructure to enable accurate data transfer between UAVs for efficient path planning. A multi-agent deep reinforcement learning approach is applied to train a group of CUAVs to intercept a faster malicious UAV, while avoiding collisions among other CUAVs and non-cooperating obstacles (i.e. other aerial objects maneuvering in the area). The impact of the latency incurred through UAV-to-UAV communications is showcased and discussed with preliminary numerical results. 
    more » « less
  5. null (Ed.)
    Data falsification attack in Vehicular Ad hoc Networks (VANET) for the Internet of Vehicles (IoV) is achieved by corrupting the data exchanged between nodes with false information. Data is the most valuable asset these days from which many analyses and results can be drawn out. But the privacy concern raised by users has become the greatest hindrance in performing data analysis. In IoV, misbehavior detection can be performed by creating a machine learning model from basic safety message (BSM) dataset of vehicles. We propose a privacy-preserving misbehavior detecting system for IoV using Federated Machine Learning. Vehicles in VANET for IoV are given the initial dull model to locally train using their own local data. On doing this we get a collective smart model that can classify Position Falsification attack in VANET using the data generated by each vehicle. All this is done without actually sharing the data with any third party to perform analysis. In this paper, we compare the performance of the attack detection model trained by using a federated and central approach. This training method trains the model on a different kind of position falsification attack by using local BSM data generated on each vehicle. 
    more » « less