skip to main content


This content will become publicly available on May 31, 2024

Title: TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning

Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However, deploying interpretable artificial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduceTinyNS, the first platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators.TinyNSprovides recipes and parsers to automatically write microcontroller code for five types of neurosymbolic models, combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine learning models.TinyNSuses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, and categorical search spaces to find the best synergy of symbolic code and neural networks within the hardware resource budget. To guarantee deployability,TinyNStalks to the target hardware during the optimization process. We showcase the utility ofTinyNSby deploying microcontroller-class neurosymbolic models through several case studies. In all use cases,TinyNSoutperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware.

 
more » « less
Award ID(s):
1822935 1705135
NSF-PAR ID:
10494109
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Battery-free and intermittently powered devices offer long lifetimes and enable deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging due to the lack of platform support for more advanced (32-bit) microprocessors and specialized accelerators---which can execute data-intensive machine learning tasks, but add complexity across the stack when dealing with intermittent power. We present Protean to bridge the platform gap for inference-capable battery-free sensors. Designed for runtime scalability, meeting the dynamic range of energy harvesters with matching heterogeneous processing elements like neural network accelerators. We develop a modular "plug-and-play" hardware platform, SuperSensor, with a reconfigurable energy storage circuit that powers a 32-bit ARM-based microcontroller with a convolutional neural network accelerator. An adaptive task-based runtime system, Chameleon, provides intermittency-proof execution of machine learning tasks across heterogeneous processing elements. The runtime automatically scales and dispatches these tasks based on incoming energy, current state, and programmer annotations. A code generator, Metamorph, automates conversion of ML models to intermittent safe execution across heterogeneous compute elements. We evaluate Protean with audio and image workloads and demonstrate up to 666x improvement in inference energy efficiency by enabling usage of modern computational elements within intermittent computing. Further, Protean provides up to 166% higher throughput compared to non-adaptive baselines. 
    more » « less
  2. Abstract

    Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research.

     
    more » « less
  3. Deep inertial sequence learning has shown promising odometric resolution over model-based approaches for trajectory estimation in GPS-denied environments. However, existing neural inertial dead-reckoning frameworks are not suitable for real-time deployment on ultra-resource-constrained (URC) devices due to substantial memory, power, and compute bounds. Current deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial disturbances, varying sensor orientation, heading rate singularity, and failure in altitude estimation. In this paper, we introduce TinyOdom, a framework for training and deploying neural inertial models on URC hardware. TinyOdom exploits hardware and quantization-aware Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN) backbone to train lightweight models targetted towards URC devices. In addition, we propose a magnetometer, physics, and velocity-centric sequence learning formulation robust to preceding inertial perturbations. We also expand 2D sequence learning to 3D using a model-free barometric g-h filter robust to inertial and environmental variations. We evaluate TinyOdom for a wide spectrum of inertial odometry applications and target hardware against competing methods. Specifically, we consider four applications: pedestrian, animal, aerial, and underwater vehicle dead-reckoning. Across different applications, TinyOdom reduces the size of neural inertial models by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of models on URC devices while still maintaining or exceeding the localization resolution over the state-of-the-art. The proposed barometric filter tracks altitude within ±0.1m and is robust to inertial disturbances and ambient dynamics. Finally, our ablation study shows that the introduced magnetometer, physics, and velocity-centric sequence learning formulation significantly improve localization performance even with notably lightweight models. 
    more » « less
  4. Inertial navigation provides a small footprint, low-power, and low-cost pathway for localization in GPS-denied environments on extremely resource-constrained Internet-of-Things (IoT) platforms. Traditionally, application-specific heuristics and physics-based kinematic models are used to mitigate the curse of drift in inertial odometry. These techniques, albeit lightweight, fail to handle domain shifts and environmental non-linearities. Recently, deep neural-inertial sequence learning has shown superior odometric resolution in capturing non-linear motion dynamics without human knowledge over heuristic-based methods. These AI-based techniques are data-hungry, suffer from excessive resource usage, and cannot guarantee following the underlying system physics. This paper highlights the unique methods, opportunities, and challenges in porting real-time AI-enhanced inertial navigation algorithms onto IoT platforms. First, we discuss how platform-aware neural architecture search coupled with ultra-lightweight model backbones can yield neural-inertial odometry models that are 31–134 x smaller yet achieve or exceed the localization resolution of state-of-the-art AI-enhanced techniques. The framework can generate models suitable for locating humans, animals, underwater sensors, aerial vehicles, and precision robots. Next, we showcase how techniques from neurosymbolic AI can yield physics-informed and interpretable neural-inertial navigation models. Afterward, we present opportunities for fine-tuning pre-trained odometry models in a new domain with as little as 1 minute of labeled data, while discussing inexpensive data collection and labeling techniques. Finally, we identify several open research challenges that demand careful consideration moving forward. 
    more » « less
  5. Incorporating symbolic reasoning into machine learning algorithms is a promising approach to improve performance on learning tasks that re- quire logical reasoning. We study the problem of generating a programmatic variant of referring expressions that we call referring relational pro- grams. In particular, given a symbolic representation of an image and a target object in that image, the goal is to generate a relational program that uniquely identifies the target object in terms of its attributes and its relations to other objects in the image. We propose a neurosymbolic program synthesis algorithm that combines a policy neural network with enumerative search to generate such relational programs. The policy neural net- work employs a program interpreter that provides immediate feedback on the consequences of the decisions made by the policy, and also takes into account the uncertainty in the symbolic representation of the image. We evaluate our algorithm on challenging benchmarks based on the CLEVR dataset, and demonstrate that our approach significantly outperforms several baselines. 
    more » « less