skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Estimation of malaria parasite migration using gene flow simulations: Addressing the impact of sparse sample locations
The estimation of malaria parasite migration can play a vital role in informing elimination strategies by pinpointing regions with higher parasite migration that act as transmission sources, and that could be the focus of elimination interventions. Gene flow simulation methods such as Estimated Effective Migration Surfaces (EEMS) and Migration and Population-Size Surfaces (MAPS) use a Markov Chain Monte Carlo simulation-based approach to visualize a species' migration and diversity. These methods utilize georeferenced genomic data and present output in the form of migration contour maps. Despite their potential, there is uncertainty in EEMS and MAPS outputs when sampling locations are sparse - an aspect that remains under-explored in current research. We present a framework designed to systematically assess the impact of sample locations and sample size on migration contours in gene flow simulations that goes beyond the posterior probability map available in EEMS. We test our framework using publicly available genomic data collected from Cambodia and border regions of Thailand, Vietnam, and Laos during 2008-2013. The methodology leverages kernel density estimation and topological skeletons in conjunction with other spatial analysis methods to quantify the impact of sparse sample locations on gene flow simulations. Multiple sample resolutions were tested against a baseline resolution, and the findings highlight how migration contours vary with sampling resolution and how our approach can be applied to guide the production and mapping of reliable migration contours. Our research provides valuable insights about both the reliability and precision of model outputs when employing gene flow simulation techniques e.g., EEMS and MAPS, to estimate malaria parasite migration. The findings revealed that by employing our approach, we were able to maintain approximately 67% consistency between the contours and the reference dataset, even when utilizing only half of the sample locations. This knowledge will improve both the reliability and precision of these model outputs in future studies.  more » « less
Award ID(s):
2049805
PAR ID:
10494319
Author(s) / Creator(s):
Publisher / Repository:
American Society of Tropical Medicine and Hygiene
Date Published:
Journal Name:
American Society of Tropical Medicine and Hygiene
Format(s):
Medium: X
Location:
Chicago, IL
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial population genetic data often exhibits ‘isolation-by-distance,’ where genetic similarity tends to decrease as individuals become more geographically distant. The rate at which genetic similarity decays with distance is often spatially heterogeneous due to variable population processes like genetic drift, gene flow, and natural selection. Petkova et al., 2016 developed a statistical method called Estimating Effective Migration Surfaces (EEMS) for visualizing spatially heterogeneous isolation-by-distance on a geographic map. While EEMS is a powerful tool for depicting spatial population structure, it can suffer from slow runtimes. Here, we develop a related method called Fast Estimation of Effective Migration Surfaces (FEEMS). FEEMS uses a Gaussian Markov Random Field model in a penalized likelihood framework that allows for efficient optimization and output of effective migration surfaces. Further, the efficient optimization facilitates the inference of migration parameters per edge in the graph, rather than per node (as in EEMS). With simulations, we show conditions under which FEEMS can accurately recover effective migration surfaces with complex gene-flow histories, including those with anisotropy. We apply FEEMS to population genetic data from North American gray wolves and show it performs favorably in comparison to EEMS, with solutions obtained orders of magnitude faster. Overall, FEEMS expands the ability of users to quickly visualize and interpret spatial structure in their data. 
    more » « less
  2. Abstract

    Despite considerable effort, malaria remains a major public health burden. Malaria is caused by fivePlasmodiumspecies and is transmitted to humans via the femaleAnophelesmosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions betweenPlasmodiumandAnophelesmosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.

     
    more » « less
  3. We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps, to achieve state-of-the-art simulation of in-viscid fluid phenomena. We devise a novel hybrid neural field representation, Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a pyramid of overlapping, multi-resolution, and spatially sparse grids, to compactly represent long-term spatiotemporal velocity fields at high accuracy. With this neural velocity buffer in hand, we compute long-term, bidirectional flow maps and their Jacobians in a mechanistically symmetric manner, to facilitate drastic accuracy improvement over existing solutions. These long-range, bidirectional flow maps enable high advection accuracy with low dissipation, which in turn facilitates high-fidelity incompressible flow simulations that manifest intricate vortical structures. We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences. Our examples show increased performance over existing methods in terms of energy conservation, visual complexity, adherence to experimental observations, and preservation of detailed vortical structures.

     
    more » « less
  4. Increasing temperatures have raised concerns over the potential effect on disease spread. Temperature is a well known factor affecting mosquito population dynamics and the development rate of the malaria parasite within the mosquito, and consequently, malaria transmission. A sinusoidal wave is commonly used to incorporate temperature effects in malaria models, however, we introduce a seasonal malaria framework that links data on temperature-dependent mosquito and parasite demographic traits to average monthly regional temperature data, without forcing a sinusoidal t to the data. We introduce a spline methodology that maps temperature-dependent mosquito traits to time-varying model parameters. The resulting non-autonomous system of differential equations is used to study the impact of seasonality on malaria transmission dynamics and burden in a high and low malaria transmission region in Malawi. We present numerical simulations illustrating how temperature shifts alter the entomological inoculation rate and the number of malaria infections in these regions. 
    more » « less
  5. Increasing temperatures have raised concerns over the potential effect on disease spread. Temperature is a well known factor affecting mosquito population dynamics and the development rate of the malaria parasite within the mosquito, and consequently, malaria transmission. A sinusoidal wave is commonly used to incorporate temperature effects in malaria models, however, we introduce a seasonal malaria framework that links data on temperature-dependent mosquito and parasite demographic traits to average monthly regional temperature data, without forcing a sinusoidal fit to the data. We introduce a spline methodology that maps temperature-dependent mosquito traits to time-varying model parameters. The resulting non-autonomous system of differential equations is used to study the impact of seasonality on malaria transmission dynamics and burden in a high and low malaria transmission region in Malawi. We present numerical simulations illustrating how temperature shifts alter the entomological inoculation rate and the number of malaria infections in these regions. 
    more » « less