skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A chromosome-scale assembly for ‘d’Anjou’ pear
Abstract Cultivated pear consists of several Pyrus species with Pyrus communis (European pear) representing a large fraction of worldwide production. As a relatively recently domesticated crop and perennial tree, pear can benefit from genome-assisted breeding. Additionally, comparative genomics within Rosaceae promises greater understanding of evolution within this economically important family. Here, we generate a fully phased chromosome-scale genome assembly of P. communis ‘d’Anjou.’ Using PacBio HiFi and Dovetail Omni-C reads, the genome is resolved into the expected 17 chromosomes, with each haplotype totaling nearly 540 Megabases and a contig N50 of nearly 14 Mb. Both haplotypes are highly syntenic to each other and to the Malus domestica ‘Honeycrisp’ apple genome. Nearly 45,000 genes were annotated in each haplotype, over 90% of which have direct RNA-seq expression evidence. We detect signatures of the known whole-genome duplication shared between apple and pear, and we estimate 57% of d’Anjou genes are retained in duplicate derived from this event. This genome highlights the value of generating phased diploid assemblies for recovering the full allelic complement in highly heterozygous crop species.  more » « less
Award ID(s):
2239530
PAR ID:
10494385
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
G3: Genes, Genomes, Genetics
Volume:
14
Issue:
3
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McIntyre, L (Ed.)
    Abstract Genome sequencing for agriculturally important Rosaceous crops has made rapid progress both in completeness and annotation quality. Whole genome sequence and annotation give breeders, researchers, and growers information about cultivar-specific traits such as fruit quality and disease resistance, and inform strategies to enhance postharvest storage. Here we present a haplotype-phased, chromosomal-level genome of Malus domestica, ‘WA 38’, a new apple cultivar released to market in 2017 as Cosmic Crisp®. Using both short and long-read sequencing data with a k-mer-based approach, chromosomes originating from each parent were assembled and segregated. This is the first pome fruit genome fully phased into parental haplotypes in which chromosomes from each parent are identified and separated into their unique, respective haplomes. The two haplome assemblies, ‘Honeycrisp’ originated HapA and ‘Enterprise’ originated HapB, are about 650 Megabases each, and both have a BUSCO score of 98.7% complete. A total of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively. Additionally, we provide genome-scale comparisons to ‘Gala’, ‘Honeycrisp’, and other relevant cultivars highlighting major differences in genome structure and gene family circumscription. This assembly and annotation was done in collaboration with the American Campus Tree Genomes project that includes ‘WA 38’ (Washington State University), ‘d’Anjou’ pear (Auburn University), and many more. To ensure transparency, reproducibility, and applicability for any genome project, our genome assembly and annotation workflow is recorded in detail and shared under a public GitLab repository. All software is containerized, offering a simple implementation of the workflow. 
    more » « less
  2. Harris, T (Ed.)
    Abstract Potato is a key food crop with a complex, polyploid genome. Advancements in sequencing technologies coupled with improvements in genome assembly algorithms have enabled generation of phased, chromosome-scale genome assemblies for cultivated tetraploid potato. The SpudDB database houses potato genome sequence and annotation, with the doubled monoploid DM 1–3 516 R44 (hereafter DM) genome serving as the reference genome and haplotype. Diverse annotation data types for DM genes are provided through a suite of Gene Report Pages including gene expression profiles across 438 potato samples. To further annotate potato genes based on expression, 65 gene co-expression modules were constructed that permit the identification of tightly co-regulated genes within DM across development and responses to wounding, abiotic stress, and biotic stress. Genome browser views of DM and 28 other potato genomes are provided along with a download page for genome sequence and annotation. To link syntenic genes within and between haplotypes, syntelogs were identified across 25 cultivated potato genomes. Through access to potato genome sequences and associated annotations, SpudDB can enable potato biologists, geneticists, and breeders to continue to improve this key food crop. 
    more » « less
  3. Abstract Domestication of the apple was mainly driven by interspecific hybridization. In the present study, we report the haplotype-resolved genomes of the cultivated apple (Malus domesticacv. Gala) and its two major wild progenitors,M. sieversiiandM. sylvestris. Substantial variations are identified between the two haplotypes of each genome. Inference of genome ancestry identifies ~23% of the Gala genome as of hybrid origin. Deep sequencing of 91 accessions identifies selective sweeps in cultivated apples that originated from either of the two progenitors and are associated with important domestication traits. Construction and analyses of apple pan-genomes uncover thousands of new genes, with hundreds of them being selected from one of the progenitors and largely fixed in cultivated apples, revealing that introgression of new genes/alleles is a hallmark of apple domestication through hybridization. Finally, transcriptome profiles of Gala fruits at 13 developmental stages unravel ~19% of genes displaying allele-specific expression, including many associated with fruit quality. 
    more » « less
  4. Ingvarsson, P (Ed.)
    Abstract Eucalyptus grandis is a hardwood tree used worldwide as pure species or hybrid partner to breed fast-growing plantation forestry crops that serve as feedstocks of timber and lignocellulosic biomass for pulp, paper, biomaterials, and biorefinery products. The current v2.0 genome reference for the species served as the first reference for the genus and has helped drive the development of molecular breeding tools for eucalypts. Using PacBio HiFi long reads and Omni-C proximity ligation sequencing, we produced an improved, haplotype-phased assembly (v4.0) for TAG0014, an early-generation selection of E. grandis. The 2 haplotypes are 571 Mbp (HAP1) and 552 Mbp (HAP2) in size and consist of 37 and 46 contigs scaffolded onto 11 chromosomes (contig N50 of 28.9 and 16.7 Mbp), respectively. These haplotype assemblies are 70–90 Mbp smaller than the diploid v2.0 assembly but capture all except one of the 22 telomeres, suggesting that substantial redundant sequence was included in the previous assembly. A total of 35,929 (HAP1) and 35,583 (HAP2) gene models were annotated, of which 438 and 472 contain long introns (>10 kbp) in gene models previously (v2.0) identified as multiple smaller genes. These and other improvements have increased gene annotation completeness levels from 93.8 to 99.4% in the v4.0 assembly. We found that 6,493 and 6,346 genes are within tandem duplicate arrays (HAP1 and HAP2, respectively, 18.4 and 17.8% of the total) and >43.8% of the haplotype assemblies consists of repeat elements. Analysis of synteny between the haplotypes and the E. grandis v2.0 reference genome revealed extensive regions of collinearity, but also some major rearrangements, and provided a preview of population and pangenome variation in the species. 
    more » « less
  5. Abstract BackgroundDe novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species. FindingsUsing Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements. ConclusionsKnowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees. 
    more » « less