skip to main content


Title: SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
Shape sensing is an emerging technique for the reconstruction of deformed shapes using data from a discrete network of strain sensors. The prominence is due to its suitability in promising applications such as structural health monitoring in multiple engineering fields and shape capturing in the medical field. In this work, a physics-informed deep learning model, named SenseNet, was developed for shape sensing applications. Unlike existing neural network approaches for shape sensing, SenseNet incorporates the knowledge of the physics of the problem, so its performance does not rely on the choices of the training data. Compared with numerical physics-based approaches, SenseNet is a mesh-free method, and therefore it offers convenience to problems with complex geometries. SenseNet is composed of two parts: a neural network to predict displacements at the given input coordinates, and a physics part to compute the loss using a function incorporated with physics information. The prior knowledge considered in the loss function includes the boundary conditions and physics relations such as the strain–displacement relation, material constitutive equation, and the governing equation obtained from the law of balance of linear momentum.SenseNet was validated with finite-element solutions for cases with nonlinear displacement fields and stress fields using bending and fixed tension tests, respectively, in both two and three dimensions. A study of the sensor density effects illustrated the fact that the accuracy of the model can be improved using a larger amount of strain data. Because general three dimensional governing equations are incorporated in the model, it was found that SenseNet is capable of reconstructing deformations in volumes with reasonable accuracy using just the surface strain data. Hence, unlike most existing models, SenseNet is not specialized for certain types of elements, and can be extended universally for even thick-body applications.  more » « less
Award ID(s):
1911836
NSF-PAR ID:
10494469
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
-
Publisher / Repository:
Journal of Engineering Mechanics
Date Published:
Journal Name:
Journal of Engineering Mechanics
Edition / Version:
-
Volume:
149
Issue:
3
ISSN:
0733-9399
Subject(s) / Keyword(s):
["-"]
Format(s):
Medium: X Size: - Other: -
Size(s):
["-"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Traditional data-driven deep learning models often struggle with high training costs, error accumulation, and poor generalizability in complex physical processes. Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model. Most PiDL approaches regularize training by embedding governing equations into the loss function, yet this depends heavily on extensive hyperparameter tuning to weigh each loss term. To this end, we propose to leverage physics prior knowledge by “baking” the discretized governing equations into the neural network architecture via the connection between the partial differential equations (PDE) operators and network structures, resulting in a PDE-preserved neural network (PPNN). This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction accuracy, outperforming conventional black-box models. The effectiveness and merit of the proposed methods have been demonstrated across various spatiotemporal dynamical systems governed by spatiotemporal PDEs, including reaction-diffusion, Burgers’, and Navier-Stokes equations.

     
    more » « less
  2. null (Ed.)
    Modern digital manufacturing processes, such as additive manufacturing, are cyber-physical in nature and utilize complex, process-specific simulations for both design and manufacturing. Although computational simulations can be used to optimize these complex processes, they can take hours or days--an unreasonable cost for engineering teams leveraging iterative design processes. Hence, more rapid computational methods are necessary in areas where computation time presents a limiting factor. When existing data from historical examples is plentiful and reliable, supervised machine learning can be used to create surrogate models that can be evaluated orders of magnitude more rapidly than comparable finite element approaches. However, for applications that necessitate computationally- intensive simulations, even generating the training data necessary to train a supervised machine learning model can pose a significant barrier. Unsupervised methods, such as physics- informed neural networks, offer a shortcut in cases where training data is scarce or prohibitive. These novel neural networks are trained without the use of potentially expensive labels. Instead, physical principles are encoded directly into the loss function. This method substantially reduces the time required to develop a training dataset, while still achieving the evaluation speed that is typical of supervised machine learning surrogate models. We propose a new method for stochastically training and testing a convolutional physics-informed neural network using the transient 3D heat equation- to model temperature throughout a solid object over time. We demonstrate this approach by applying it to a transient thermal analysis model of the powder bed fusion manufacturing process. 
    more » « less
  3. Physics-guided Neural Networks (PGNNs) represent an emerging class of neural networks that are trained using physics-guided (PG) loss functions (capturing violations in network outputs with known physics), along with the supervision contained in data. Existing work in PGNNs has demonstrated the efficacy of adding single PG loss functions in the neural network objectives, using constant trade-off parameters, to ensure better generalizability. However, in the presence of multiple PG functions with competing gradient directions, there is a need to adaptively tune the contribution of different PG loss functions during the course of training to arrive at generalizable solutions. We demonstrate the presence of competing PG losses in the generic neural network problem of solving for the lowest (or highest) eigenvector of a physics-based eigenvalue equation, which is commonly encountered in many scientific problems. We present a novel approach to handle competing PG losses and demonstrate its efficacy in learning generalizable solutions in two motivating applications of quantum mechanics and electromagnetic propagation. All the code and data used in this work are available at https://github.com/jayroxis/Cophy-PGNN. 
    more » « less
  4. The eco-toll estimation problem quantifies the expected environmental cost (e.g., energy consumption, exhaust emissions) for a vehicle to travel along a path. This problem is important for societal applications such as eco-routing, which aims to find paths with the lowest exhaust emissions or energy need. The challenges of this problem are threefold: (1) the dependence of a vehicle's eco-toll on its physical parameters; (2) the lack of access to data with eco-toll information; and (3) the influence of contextual information (i.e. the connections of adjacent segments in the path) on the eco-toll of road segments. Prior work on eco-toll estimation has mostly relied on pure data-driven approaches and has high estimation errors given the limited training data. To address these limitations, we propose a novel Eco-toll estimation Physics-informed Neural Network framework (Eco-PiNN) using three novel ideas, namely, (1) a physics-informed decoder that integrates the physical laws governing vehicle dynamics into the network, (2) an attention-based contextual information encoder, and (3) a physics-informed regularization to reduce overfitting. Experiments on real-world heavy-duty truck data show that the proposed method can greatly improve the accuracy of eco-toll estimation compared with state-of-the-art methods. *The full version of the paper can be accessed at https://arxiv.org/abs/2301.05739 
    more » « less
  5. Abstract

    Ferromagnetic shape memory alloys (MSMAs), such as Ni-Mn-Ga single crystals, can exhibit the shape memory effect due to an applied magnetic field at room temperature. Under a variable magnetic field and a constant bias stress loading, MSMAs have been used for actuation applications. Under variable stress and a constant bias field, MSMAs can be used in power harvesting or sensing devices, e.g. in structural health monitoring applications. This behavior is primarily a result of the approximately tetragonal unit cell whose magnetic easy axis is approximately aligned with the short axis of the unit cell within the Ni-Mn-Ga single crystals. Under an applied field, the magnetic easy axis tends to align with the external field. Similarly, under an applied compressive force, the short side of the unit cell tends to align with the direction of the force. This work introduced a new feature to the existing macro-scale magneto-mechanical model for Ni-Mn-Ga single crystal. This model includes the fact that the magnetic easy axis in the two variants is not exactly perpendicular as observed by D’silvaet al(2020Shape Mem. Superelasticity667–88). This offset helps explain some of the power harvesting capabilities of MSMAs. Model predictions are compared to experimental data collected on a Ni-Mn-Ga single crystal. The experiments include both stress-controlled loading with constant bias magnetic field load (which mimics power harvesting or sensing) and field-controlled loading with constant bias compressive stress (which mimics actuation). Each type of test was performed at several different load levels, and the applied field was measured without the MSMA specimen present so that demagnetization does not affect the experimentally measured field as suggested by Eberleet al(2019Smart Mater. Struct.28025022). Results show decent agreement between model predictions and experimental data. Although the model predicts experimental results decently, it does not capture all the features of the experimental data. In order to capture all the experimental features, finally, a generalized regression neural network (GRNN) was trained using the experimental data (stress, strain, magnetic field, & emf) so that it can make a reasonably better prediction.

     
    more » « less