skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
Shape sensing is an emerging technique for the reconstruction of deformed shapes using data from a discrete network of strain sensors. The prominence is due to its suitability in promising applications such as structural health monitoring in multiple engineering fields and shape capturing in the medical field. In this work, a physics-informed deep learning model, named SenseNet, was developed for shape sensing applications. Unlike existing neural network approaches for shape sensing, SenseNet incorporates the knowledge of the physics of the problem, so its performance does not rely on the choices of the training data. Compared with numerical physics-based approaches, SenseNet is a mesh-free method, and therefore it offers convenience to problems with complex geometries. SenseNet is composed of two parts: a neural network to predict displacements at the given input coordinates, and a physics part to compute the loss using a function incorporated with physics information. The prior knowledge considered in the loss function includes the boundary conditions and physics relations such as the strain–displacement relation, material constitutive equation, and the governing equation obtained from the law of balance of linear momentum.SenseNet was validated with finite-element solutions for cases with nonlinear displacement fields and stress fields using bending and fixed tension tests, respectively, in both two and three dimensions. A study of the sensor density effects illustrated the fact that the accuracy of the model can be improved using a larger amount of strain data. Because general three dimensional governing equations are incorporated in the model, it was found that SenseNet is capable of reconstructing deformations in volumes with reasonable accuracy using just the surface strain data. Hence, unlike most existing models, SenseNet is not specialized for certain types of elements, and can be extended universally for even thick-body applications.  more » « less
Award ID(s):
1911836
PAR ID:
10494469
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
-
Publisher / Repository:
Journal of Engineering Mechanics
Date Published:
Journal Name:
Journal of Engineering Mechanics
Edition / Version:
-
Volume:
149
Issue:
3
ISSN:
0733-9399
Subject(s) / Keyword(s):
-
Format(s):
Medium: X Size: - Other: -
Size(s):
-
Sponsoring Org:
National Science Foundation
More Like this
  1. Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations (PDEs) in a forward and inverse manner using neural networks. However, balancing individual loss terms can be challenging, mainly when training these networks for stiff PDEs and scenarios requiring enforcement of numerous constraints. Even though statistical methods can be applied to assign relative weights to the regression loss for data, assigning relative weights to equation-based loss terms remains a formidable task. This paper proposes a method for assigning relative weights to the mean squared loss terms in the objective function used to train PINNs. Due to the presence of temporal gradients in the governing equation, the physics-informed loss can be recast using numerical integration through backward Euler discretization. The physics-uninformed and physics-informed networks should yield identical predictions when assessed at corresponding spatiotemporal positions. We refer to this consistency as “temporal consistency.” This approach introduces a unique method for training physics-informed neural networks (PINNs), redefining the loss function to allow for assigning relative weights with statistical properties of the observed data. In this work, we consider the two- and three-dimensional Navier–Stokes equations and determine the kinematic viscosity using the spatiotemporal data on the velocity and pressure fields. We consider numerical datasets to test our method. We test the sensitivity of our method to the timestep size, the number of timesteps, noise in the data, and spatial resolution. Finally, we use the velocity field obtained using particle image velocimetry experiments to generate a reference pressure field and test our framework using the velocity and pressure fields. 
    more » « less
  2. Physics-guided Neural Networks (PGNNs) represent an emerging class of neural networks that are trained using physics-guided (PG) loss functions (capturing violations in network outputs with known physics), along with the supervision contained in data. Existing work in PGNNs has demonstrated the efficacy of adding single PG loss functions in the neural network objectives, using constant trade-off parameters, to ensure better generalizability. However, in the presence of multiple PG functions with competing gradient directions, there is a need to adaptively tune the contribution of different PG loss functions during the course of training to arrive at generalizable solutions. We demonstrate the presence of competing PG losses in the generic neural network problem of solving for the lowest (or highest) eigenvector of a physics-based eigenvalue equation, which is commonly encountered in many scientific problems. We present a novel approach to handle competing PG losses and demonstrate its efficacy in learning generalizable solutions in two motivating applications of quantum mechanics and electromagnetic propagation. All the code and data used in this work are available at https://github.com/jayroxis/Cophy-PGNN. 
    more » « less
  3. Due to the complex behaviour of amorphous shape memory polymers (SMPs), traditional constitutive models often struggle with material-specific limitations, challenging curve-fitting, history-dependent stress calculations and error accumulation from stepwise calculation for governing equations. In this study, we propose a physics-informed artificial neural network (PIANN) that integrates a conventional neural network with a strain-based phase transition framework to predict the constitutive behaviour of amorphous SMPs. The model is validated using five temperature–stress datasets and four temperature–strain datasets, including experimental data from four types of SMPs and simulation results from a widely accepted model. PIANN predicts four key shape memory behaviours: stress evolution during hot programming, stress recovery following both cold and hot programming and free strain recovery during heating branch. Notably, it predicts recovery strain during heating without using any heating data for training. Comparisons with experimental data show excellent agreement in both programming (cooling) and recovery (heating) branches. Remarkably, the model achieves this performance with as few as two temperature–stress curves in the training set. Overall, PIANN addresses common challenges in SMP modelling by eliminating history dependence, improving curve-fitting accuracy and significantly enhancing computational efficiency. This work represents a substantial step forward in developing generalizable models for SMPs. 
    more » « less
  4. We present a new algorithm for learning unknown gov- erning equations from trajectory data, using a family of neural net- works. Given samples of solutions x(t) to an unknown dynamical system x ̇ (t) = f (t, x(t)), we approximate the function f using a family of neural networks. We express the equation in integral form and use Euler method to predict the solution at every successive time step using at each iter- ation a different neural network as a prior for f. This procedure yields M-1 time-independent networks, where M is the number of time steps at which x(t) is observed. Finally, we obtain a single function f(t,x(t)) by neural network interpolation. Unlike our earlier work, where we numer- ically computed the derivatives of data, and used them as target in a Lipschitz regularized neural network to approximate f, our new method avoids numerical differentiations, which are unstable in presence of noise. We test the new algorithm on multiple examples in a high-noise setting. We empirically show that generalization and recovery of the governing equation improve by adding a Lipschitz regularization term in our loss function and that this method improves our previous one especially in the high-noise regime, when numerical differentiation provides low qual- ity target data. Finally, we compare our results with other state of the art methods for system identification. 
    more » « less
  5. Abstract Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials. Physics-based simulation, including computational fluid dynamics (CFD), is the dominant approach to predict melt pool dynamics. However, the physics-based simulation approaches suffer from the inherent issue of very high computational cost. This paper provides a physics-informed machine learning method by integrating the conventional neural networks with the governing physical laws to predict the melt pool dynamics, such as temperature, velocity, and pressure, without using any training data on velocity and pressure. This approach avoids solving the nonlinear Navier–Stokes equation numerically, which significantly reduces the computational cost (if including the cost of velocity data generation). The difficult-to-determine parameters' values of the governing equations can also be inferred through data-driven discovery. In addition, the physics-informed neural network (PINN) architecture has been optimized for efficient model training. The data-efficient PINN model is attributed to the extra penalty by incorporating governing PDEs, initial conditions, and boundary conditions in the PINN model. 
    more » « less