The relationship between angler catch rates and fish abundance can contribute to or hinder sustainable exploitation of fisheries depending on whether catch rates are proportional to fish abundance or are hyperstable. We performed a whole-ecosystem experiment in which fish abundance was manipulated and paired with weekly angler catch rate estimates from controlled experimental fishing. Catch rates were hyperstable (β = 0.47) in response to changes in fish abundance. By excluding effort sorting (i.e., catch rates remaining high because less skilled anglers leave the fishery as abundance declines), our experiment isolated the influence of fish aggregation as a driver of hyperstability. Spatial analysis of catch locations did not identify clustering around specific points, suggesting that loose aggregation to preferred habitat at the scale of the entire littoral zone was enough to maintain stable catch rates. In our study, general, non-spawning, habitat preferences created loose aggregations for anglers to target, which was sufficient to generate hyperstability. Habitat preferences are common to nearly all fishes and widely known to anglers, suggesting that many harvest-oriented recreational fisheries can be expected to exhibit hyperstability.
more »
« less
Counteracting effects of “hook avoidance” and “hook habituation” on angler catch rates in a catch‐and‐release fishery
Abstract Catch‐and‐release (C&R) angling is often used to maintain high catch rates but fish vulnerability to capture may decrease following hooking, thereby decreasing angler catch per unit effort (CPUE) (hyperdepletion). To determine if fish post‐capture response affected recapture probability and population‐level CPUE, individual capture histories of Largemouth Bass in two lakes were compared before and after doubling angling effort in a Before‐After Control‐Impact (BACI) analysis. Previous capture and day‐of‐season both affected recapture probability. Counteracting effects of previous capture and reduced late‐season catch rates caused no hyperdepletion of angler CPUE. Our results highlight the complexity of fish behavioral responses to angling and suggest that hyperdepletion of angling catch rates may not be an issue in C&R fisheries.
more »
« less
- PAR ID:
- 10494522
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Fisheries Management and Ecology
- ISSN:
- 0969-997X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Combining information from active and passive sampling of mobile animals is challenging because active‐sampling data are affected by limited detection of rare or sparse taxa, while passive‐sampling data reflect both density and movement. We propose that a model‐based analysis allows information to be combined between these methods to interpret variation in the relationship between active estimates of density and passive measurements of catch per unit effort to yield novel information on activity rates (distance/time). We illustrate where discrepancies arise between active and passive methods and demonstrate the model‐based approach with seasonal surveys of fish assemblages in the Florida Everglades, where data are derived from concurrent sampling with throw traps, an enclosure‐type sampler producing point estimates of density, and drift fences with unbaited minnow traps that measure catch per unit effort (CPUE). We compared incidence patterns generated by active and passive sampling, used hierarchical Bayesian modeling to quantify the detection ability of each method, characterized interspecific and seasonal variation in the relationship between density and passively measuredCPUE, and used a predator encounter‐rate model to convert variableCPUE–density relationships into ecological information on activity rates. Activity rate information was used to compare interspecific responses to seasonal hydrology and to quantify spatial variation in non‐native fish activity. Drift fences had higher detection probabilities for rare and sparse species than throw traps, causing discrepancies in the estimated spatial distribution of non‐native species from passively measuredCPUEand actively measured density. Detection probability of the passive sampler, but not the active sampler, varied seasonally with changes in water depth. The relationship betweenCPUEand density was sensitive to fluctuating depth, with most species not having a proportional relationship betweenCPUEand density until seasonal declines in depth. Activity rate estimates revealed interspecific differences in response to declining depths and identified locations and species with high rates of activity. We propose that variation in catchability from methods that passively measureCPUEcan be sources of ecological information on activity. We also suggest that model‐based combining of data types could be a productive approach for analyzing correspondence of incidence and abundance patterns in other applications.more » « less
-
Abstract In this essay, we explore the idea that slow social change may cause degradation of the open access equilibrium in recreational fisheries. An existing bioeconomic model illustrates how three social quantities in the recreational fisheries social–ecological system—the marginal cost of fishing effort, catchability, and the relative importance of catch and effort to angler utility—influence equilibrium fish abundance. We speculate that slow directional changes in all three of these quantities may be common, driving gradual declines in abundance that may be difficult to detect. We present limited evidence in support of this speculation, highlight the need for further empirical work, and discuss the implications of slow social change for resilient management of recreational fisheries in a changing world.more » « less
-
Freshwater recreational fisheries regulations are a vital tool for achieving social and ecological fisheries objectives. However, angler behavior and fish biology may interact to influence regulation efficacy in unexpected ways. We combined models of fish growth and angler behavior to explore how angler behavior interacts with fish life history to shape the probability of fish harvest given capture across ages, life-stages, and sexes of walleye (Sander vitreus). Compared to females, males grew more quickly as juveniles, matured earlier, and reached smaller maximum sizes. Male walleye were therefore vulnerable to harvest for more of their reproductive lives than females because males spent more time at sizes where anglers were very likely to harvest them. We suggest that restricting harvest of large individuals in sexually-dimorphic species may favor the survival of large, reproductive-aged females. Moreover, we show that combining models of fish growth and harvester behavior can provide insights into how harvest affects fish with complex life histories over the course of their lives.more » « less
-
Pink shrimp (Farfantepenaeus duorarum) are an economically important species in Biscayne Bay, FL, and support both food and bait commercial fisheries. Pink shrimp are also an important food resource for higher trophic level finfish species. This includes those fishes that support Florida’s iconic and highly valued recreational flats fisheries—which have experienced a severe decline in recent decades and may be impacted by the pink shrimp fisheries. Despite their economic and ecological importance, few studies have evaluated the long-term trends in Biscayne Bay’s pink shrimp fisheries. In this study, we evaluated over 30 years (1987–2020) of fisheries-dependent and economic data on the pink shrimp bait and food fisheries in Biscayne Bay with segmented regression to identify trends and potential breakpoints. We also evaluate trends in Biscayne Bay bonefish (Albula vulpes) over 25 years (1993–2018), based on recreational angler interview data, and assess potential interactions with the shrimp fisheries. We found that landings, value, effort, and participation (number of vessels and dealers) in both Biscayne Bay pink shrimp fisheries have exhibited declines from peaks in the late 1990s. No significant trends were detected in annual bonefish catch or catch per unit effort (catch/trip), but fishing effort declined over the time series. We did not find a significant relationship between annual bonefish catch per unit effort and commercial shrimp fishing landings or effort, suggesting that the pink shrimp fisheries are not a primary factor contributing to declines in the Biscayne Bay bonefish fishery.more » « less
An official website of the United States government
