skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Liquefaction-induced ground and building interactions in İskenderun from the 2023 Kahramanmaraş earthquake sequence
Significant and widespread liquefaction occurred in İskenderun during the 2023 moment magnitude (Mw) 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared.  more » « less
Award ID(s):
2338026
PAR ID:
10494532
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Earthquake Spectra
Volume:
40
Issue:
2
ISSN:
8755-2930
Format(s):
Medium: X Size: p. 913-938
Size(s):
p. 913-938
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant and widespread liquefaction occurred in İskenderun during the 2023 Mw 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared. 
    more » « less
  2. The 2023 Kahramanmaraş earthquake sequence produced extensive liquefaction-induced ground deformations and ongoing flooding along the shoreline of the Mediterranean port city of İskenderun, Türkiye. This study compiles field observations and analyses from cross-disciplinary perspectives to investigate whether earthquake-induced liquefaction was a significant factor for increasing the flood hazard in İskenderun. Geotechnical reconnaissance observations following the earthquakes included seaward lateral spreading, settlement beneath buildings, and failures of coastal infrastructure. Three presented lateral spreading case histories indicate consistent ground deformation patterns with areas of reclaimed land. Persistent scatterer interferometry (PSI) measurements from synthetic aperture radar (SAR) imagery identify a noticeably greater rate of pre- and post-earthquake subsidence within the İskenderun coastal and urban areas relative to the surrounding regions. The PSI measurements also indicate subsidence rates accelerated following the earthquakes and were typically highest near the observed liquefaction manifestations. These evaluations suggest that while the liquefaction of coastal reclaimed fill caused significant ground deformations in the shoreline area, ongoing subsidence of İskenderun and other factors likely also exacerbated the flood hazard. Insights from this work suggest the importance of evaluating multi-hazard liquefaction and flood consequences for enhancing the resilience of coastal cities. 
    more » « less
  3. This data was gathered during the Geotechnical Extreme Events Reconnaissance (GEER) efforts following the February 6, 2023, Kahramanmaraş earthquake sequence. This dataset is comprised of terrestrial lidar scan point clouds that aim to capture liquefaction-induced building settlement, building-ground interactions, and ground deformations. The objective of the reconnaissance efforts was to capture perishable data on ground failures and liquefaction-induced infrastructure damage due to these earthquakes. Reconnaissance was performed from March 27 to April 1, 2023 in and around İskenderun, Hatay; Gölbaşı, Adıyaman; and Antakya, Hatay. Lidar scans were performed in İskenderun and Gölbaşı at selected liquefaction building sites. The reconnaissance sites were selected as those where there was evidence of liquefaction (e.g., ejecta) and liquefaction-induced building settlements, as well as building-ground interactions, and site access. The processed lidar data are included as .las point cloud files; raw data are included as .fls files. The point cloud data may be viewed and analyzed in point cloud analysis software, including the opensource software CloudCompare. Additional images of the surveyed buildings are included for reference. An explanation of the data types and structure is found in the README.pdf file. These data may be used to investigate earthquake liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations. These data will be of use and interest to engineers and researchers working in the area of liquefaction ground failures and building-ground interactions. Additional information and data from this reconnaissance are available in the GEER reports, which are referenced in the "Related Works" section. 
    more » « less
  4. This data was gathered during the Geotechnical Extreme Events Reconnaissance (GEER) efforts following the February 6, 2023, Kahramanmaraş earthquake sequence. This dataset is comprised of terrestrial lidar scan point clouds that aim to capture liquefaction-induced building settlement, building-ground interactions, and ground deformations. The objective of the reconnaissance efforts was to capture perishable data on ground failures and liquefaction-induced infrastructure damage due to these earthquakes. Reconnaissance was performed from March 27 to April 1, 2023 in and around İskenderun, Hatay; Gölbaşı, Adıyaman; and Antakya, Hatay. Lidar scans were performed in İskenderun and Gölbaşı at selected liquefaction building sites. The reconnaissance sites were selected as those where there was evidence of liquefaction (e.g., ejecta) and liquefaction-induced building settlements, as well as building-ground interactions, and site access. The processed lidar data are included as .las point cloud files; raw data are included as .fls files. The point cloud data may be viewed and analyzed in point cloud analysis software, including the opensource software CloudCompare. Additional images of the surveyed buildings are included for reference. An explanation of the data types and structure is found in the README.pdf file. These data may be used to investigate earthquake liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations. These data will be of use and interest to engineers and researchers working in the area of liquefaction ground failures and building-ground interactions. Additional information and data from this reconnaissance are available in the GEER reports, which are referenced in the "Related Works" section. 
    more » « less
  5. Widespread liquefaction occurred in the end-dumped gravelly fills and hydraulically-placed dredged sandy fill at the CentrePort of Wellington as a result of the 14 November 2016 Mw7.8 Kaikoura earthquake. This liquefaction resulted in substantial global (mass) settlement and lateral movement (spreading) of the fills towards the sea, which adversely affected wharf structures and buildings constructed on shallow and deep foundations. This paper presents key observations from the QuakeCoRE-GEER post-earthquake reconnaissance efforts at the CentrePort Wellington. The different materials and methods used to construct the reclaimed land at CentrePort influenced the patterns of observed liquefaction and its effects. Areas of gravel liquefaction at the port are especially important due to the limited number of these case histories in the literature. Liquefaction-induced ground deformations caused the wharves to displace laterally and damage their piles and offloading equipment. Lateral ground extension and differential settlement damaged buildings, whereas buildings in areas of uniform ground settlement without lateral extension performed significantly better. 
    more » « less