Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The quest for the mechanisms that halt star formation in galaxies is essential to understand their evolution. Here, we use the APEX-CALIFA survey, which includes 560 galaxies (0.005 <z< 0.08), so far the largest sample of galaxies in the nearby universe with both Integral Field Spectroscopic, Calar Alto Legacy Integral Field Area (CALIFA) and single-aperture millimeter observations, as well as the extended CALIFA sample (823 targets). Using these observations we derive (i) the deficit or excess of star formation for a given stellar mass with respect to the star formation main sequence (ΔSFMS), (ii) the gas fraction, and (iii) the star formation efficiency (SFE) for two apertures (central and global apertures using the APEX-CALIFA and CALIFA samples, respectively). We confirm the so-called “inside-out” quenching, that is, for quiescent galaxies the central values of ΔSFMS are usually smaller than those values derived from global measurements. However, for a given ΔSFMS we find that for retired galaxies the central gas fraction is larger in comparison to global measurements. Furthermore, the central SFE is significantly smaller in comparison to global counterparts. In general, in comparison to the global measurements, the deficit of star formation at the center of retired galaxies is primarily caused by the inefficiency to form new stars rather than the lack of molecular gas. We suggest that even though at the center of retired galaxies the gas fraction is larger, morphological structures could prevent that the molecular gas is transformed into new stars. Even more so in the outskirts of some retired galaxies with small gas fractions, star formation activity is still occurring.more » « lessFree, publicly-accessible full text available December 23, 2025
- 
            ABSTRACT In this study, we explore the impact of the galactic interaction/mergers on the central oxygen abundance. We analyse 234 star-forming galaxies included in the Calar Alto Legacy Integral Field Area survey with integrated molecular gas observations from the Atacama Pathfinder EXperiment millimeter telescope and the CARMA interferometer. This database has the most optical integral field spectroscopy data with CO data for yet, with integrated measurements within $$\sim 1~{R_{\rm{eff}}}$$. Our sample includes 125 isolated galaxies (control sample) and 109 galaxies in different merging stages. We find that despite whether the merging galaxies show an increase or decrease in their molecular gas fraction, the oxygen abundance does not vary significantly, in comparison to our control sample. Therefore, the enhancement and suppression of oxygen abundance are similar in both isolated galaxies and interacting/merging galaxies. On the contrary, regardless of the merger stage (including isolated sample), galaxies that present an increase in their specific star formation rate present a metallicity dilution. We suggest that both internal and external events affect the chemical composition of merging galaxies.more » « less
- 
            Abstract The EDGE-CALIFA survey provides spatially resolved optical integral-field unit and CO spectroscopy for 125 galaxies selected from the Calar Alto Legacy Integral Field Area Survey (CALIFA) Data Release 3 sample. The Extragalactic Database for Galaxy Evolution (EDGE) presents the spatially resolved products of the survey as pixel tables that reduce the oversampling in the original images and facilitate comparison of pixels from different images. By joining these pixel tables to lower-dimensional tables that provide radial profiles, integrated spectra, or global properties, it is possible to investigate the dependence of local conditions on large-scale properties. The database is freely accessible and has been utilized in several publications. We illustrate the use of this database and highlight the effects of CO upper limits on the inferred slopes of the local scaling relations between the stellar mass, star formation rate (SFR), and H2surface densities. We find that the correlation between H2and SFR surface density is the tightest among the three relations.more » « less
- 
            Abstract We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M⋆/M⊙] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction ( ) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol, , and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.more » « less
- 
            Galaxy quenching, the intricate process through which galaxies transition from active star-forming states to retired ones, remains a complex phenomenon that requires further investigation. This study investigates the role of active galactic nuclei (AGNs) in regulating star formation by analyzing a sample of 643 nearby galaxies with redshifts between 0.005 and 0.03 from the Calar Alto Legacy Integral Field Area (CALIFA) survey. Galaxies were classified according to the Quenching Stages and Nuclear Activity (QueStNA) scheme, which categorizes them based on their quenching stage and the presence of nuclear activity. We further utilized the integrated Extragalactic Database for Galaxy Evolution (iEDGE), which combined homogenized optical integral field unit and CO observations. This allowed us to examine how AGNs influence the molecular gas reservoirs of active galaxies compared to their non-active counterparts at similar evolutionary stages. Our Kolmogorov–Smirnov andχ2tests indicate that the star formation property distributions and scaling relations of AGN hosts are largely consistent with those of non-active galaxies. However, AGN hosts exhibit systematically higher molecular gas masses across all quenching stages except for the quiescent nuclear ring stage. We find that AGN hosts follow the expected trends of non-active quenching galaxies, characterized by a lower star formation efficiency and molecular gas fraction compared to star-forming galaxies. Our results suggest that signatures of instantaneous AGN feedback are not prominent in the global molecular gas and star formation properties of galaxies.more » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
