skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The NANOGrav 12.5 yr Data Set: A Computationally Efficient Eccentric Binary Search Pipeline and Constraints on an Eccentric Supermassive Binary Candidate in 3C 66B
Abstract The radio galaxy 3C 66B has been hypothesized to host a supermassive black hole binary (SMBHB) at its center based on electromagnetic observations. Its apparent 1.05 yr period and low redshift (∼0.02) make it an interesting testbed to search for low-frequency gravitational waves (GWs) using pulsar timing array (PTA) experiments. This source has been subjected to multiple searches for continuous GWs from a circular SMBHB, resulting in progressively more stringent constraints on its GW amplitude and chirp mass. In this paper, we develop a pipeline for performing Bayesian targeted searches for eccentric SMBHBs in PTA data sets, and test its efficacy by applying it to simulated data sets with varying injected signal strengths. We also search for a realistic eccentric SMBHB source in 3C 66B using the NANOGrav 12.5 yr data set employing PTA signal models containing Earth term-only as well as Earth+pulsar term contributions using this pipeline. Due to limitations in our PTA signal model, we get meaningful results only when the initial eccentricitye0< 0.5 and the symmetric mass ratioη> 0.1. We find no evidence for an eccentric SMBHB signal in our data, and therefore place 95% upper limits on the PTA signal amplitude of 88.1 ± 3.7 ns for the Earth term-only and 81.74 ± 0.86 ns for the Earth+pulsar term searches fore0< 0.5 andη> 0.1. Similar 95% upper limits on the chirp mass are (1.98 ± 0.05) × 109and (1.81 ± 0.01) × 109M. These upper limits, while less stringent than those calculated from a circular binary search in the NANOGrav 12.5 yr data set, are consistent with the SMBHB model of 3C 66B developed from electromagnetic observations.  more » « less
Award ID(s):
2020265 1847938 1909933 2146016 2307719 2125764
PAR ID:
10494545
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
963
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 144
Size(s):
Article No. 144
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit ofh0< (6.82 ± 0.35) × 10−15, andh0< (2.66 ± 0.15) × 10−15in our most sensitive sky location. Finally, we placed a multimessenger limit of < ( 1.41 ± 0.02 ) × 10 9 M on the chirp mass of the supermassive black hole binary candidate 3C 66B. 
    more » « less
  2. Abstract Pulsar timing arrays have found evidence for a low-frequency gravitational-wave background (GWB). Assuming that the GWB is produced by supermassive black hole binaries (SMBHBs), the next gravitational-wave (GW) signals astronomers anticipate are continuous waves (CWs) from single SMBHBs and their associated GWB anisotropy. The prospects for detecting CWs and anisotropy are highly dependent on the astrophysics of SMBHB populations. Thus, information from single sources can break degeneracies in astrophysical models and place much more stringent constraints than the GWB alone. We simulate and evolve SMBHB populations, model their GWs, and calculate their anisotropy and detectability. We investigate how varying components of our semianalytic model, including the galaxy stellar mass function, the SMBH–host galaxy relation (MBH–Mbulge), and the binary evolution prescription, impact the expected detections. The CW occurrence rate is greatest for few total binaries, high SMBHB masses, large scatter inMBH–Mbulge, and long hardening times. The occurrence rate depends most on the binary evolution parameters, implying that CWs offer a novel avenue to probe binary evolution. The most detectable CW sources are in the lowest frequency bin for a 16.03 yr PTA, have masses from ∼109to 1010M, and are ∼1 Gpc away. The level of anisotropy increases with frequency, with the angular power spectrum over multipole modesℓvarying in low-frequencyCℓ>0/C0from ∼5 × 10−3to ∼2 × 10−1, depending on the model; typical values are near current upper limits. Observing this anisotropy would support SMBHB models for the GWB over cosmological models, which tend to be isotropic. 
    more » « less
  3. Abstract While observations of many high-precision radio pulsars of order ≲1 μ s across the sky are needed for the detection and characterization of a stochastic background of low-frequency gravitational waves (GWs), sensitivity to single sources of GWs requires even higher timing precision. The Argentine Institute of Radio Astronomy (IAR; Instituto Argentino de Radioastronomía) has begun observations of the brightest known millisecond pulsar, J0437−4715. Even though the two antennas are smaller than other single-dish telescopes previously used for pulsar timing array (PTA) science, the IAR’s capability to monitor this pulsar daily, coupled with the pulsar’s brightness, allows for high-precision measurements of pulse-arrival time. While upgrades of the facility are currently underway, we show that modest improvements beyond current plans will provide IAR with unparalleled sensitivity to this pulsar. The most stringent upper limits on single GW sources come from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). Observations of PSR J0437−4715 will provide a significant sensitivity increase in NANOGrav’s “blind spot” in the sky where fewer pulsars are currently being observed. With state-of-the-art instrumentation installed, we estimate the array’s sensitivity will improve by a factor of ≈2–4 over 10 yr for 20% of the sky with the inclusion of this pulsar, as compared to a static version of the PTA used in NANOGrav’s most recent limits. More modest instrumentation results in factors of ≈1.4–3. We identify four other candidate pulsars as suitable for inclusion in PTA efforts. International PTA efforts will also benefit from inclusion of these data, given the potential achievable sensitivity. 
    more » « less
  4. Abstract With strong evidence of a common-spectrum stochastic process in the most recent data sets from the NANOGrav Collaboration, the European Pulsar Timing Array (PTA), Parkes PTA, and the International PTA, it is crucial to assess the effects of the several astrophysical and cosmological sources that could contribute to the stochastic gravitational wave background (GWB). Using the same data set creation and injection techniques as in Pol et al., we assess the separability of multiple GWBs by creating single and multiple GWB source data sets. We search for these injected sources using Bayesian PTA analysis techniques to assess recovery and separability of multiple astrophysical and cosmological backgrounds. For a GWB due to supermassive black hole binaries and an underlying weaker background due to primordial gravitational waves with a GW energy-density ratio of ΩPGWSMBHB= 0.5, the Bayes’ factor for a second process exceeds unity at 17 yr, and increases with additional data. At 20 yr of data, we are able to constrain the spectral index and amplitude of the weaker GWB at this density ratio to a fractional uncertainty of 64% and 110%, respectively, using current PTA methods and techniques. Using these methods and findings, we outline a basic protocol to search for multiple backgrounds in future PTA data sets. 
    more » « less
  5. Abstract The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers. 
    more » « less