skip to main content


Title: The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory
Abstract

We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise (CURN) compared to a model including only a CURN. However, further investigation shows that a disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky position is approximately 3.3 × 10−14. We also find that there are some differences in the upper limits as a function of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later epochs. This improvement is attributable to the continued growth of the pulsar timing array.

 
more » « less
NSF-PAR ID:
10492998
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
963
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 61
Size(s):
["Article No. 61"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis. Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous gravitational wave signals. Next, we present a ranking that minimizes the coupling between spatial correlation signatures, namely monopolar, dipolar, and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that an optimal selection leads to an increase in the log-Bayes factor two times steeper than a random selection for the hypothesis test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic European PTA (EPTA) data set, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is 89 % of the total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array. We expect these selection methods to play a crucial role in future PTA data combinations.

     
    more » « less
  2. Abstract We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 10 14 , and this same model is favored over an uncorrelated common power-law spectrum model with Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical background distribution for the latter Bayes factors using a method that removes interpulsar correlations from our data set, finding p = 10 −3 (≈3 σ ) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of interpulsar correlations yields p = 5 × 10 −5 to 1.9 × 10 −4 (≈3.5 σ –4 σ ). Assuming a fiducial f −2/3 characteristic strain spectrum, as appropriate for an ensemble of binary supermassive black hole inspirals, the strain amplitude is 2.4 − 0.6 + 0.7 × 10 − 15 (median + 90% credible interval) at a reference frequency of 1 yr −1 . The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points to the gravitational-wave origin of this signal. 
    more » « less
  3. Abstract

    Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 × 10−15at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav’s 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.

     
    more » « less
  4. Abstract

    Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit ofh0< (6.82 ± 0.35) × 10−15, andh0< (2.66 ± 0.15) × 10−15in our most sensitive sky location. Finally, we placed a multimessenger limit of<(1.41±0.02)×109Mon the chirp mass of the supermassive black hole binary candidate 3C 66B.

     
    more » « less
  5. ABSTRACT

    The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.

     
    more » « less