skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors
Award ID(s):
1925790
NSF-PAR ID:
10494555
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Nanotechnology
Volume:
17
Issue:
12
ISSN:
1748-3387
Page Range / eLocation ID:
1265 to 1271
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D architectures have been long harnessed to create lightweight yet strong cellular materials; however, the study regarding how 3D architectures facilitate the design of soft materials is at the incipient stage. Here, we demonstrate that 3D architectures can greatly facilitate the design of an intrinsically stretchable lattice conductor. We show that 3D architectures can be harnessed to enhance the overall stretchability of the soft conductors, reduce the effective density, enable resistive sensing of the large deformation of curved solids, and improve monitoring of a wastewater stream. Theoretical models are developed to understand the mechanical and conductive behaviors of the lattice conductor. We expect this type of lattice conductors can potentially inspire various designs of 3D-architected electronics for diverse applications from healthcare devices to soft robotics. 
    more » « less
  2. Soft robot deformations are typically estimated using strain sensors to infer change from a nominal shape while taking a robot‐specific mechanical model into account. This approach performs poorly during buckling and when material properties change with time, and is untenable for shape‐changing robots that don't have a well‐defined resting (unactuated) shape. Herein, these limitations are overcome using stretchable shape sensing (S3) sheets that fuse orientation measurements to estimate 3D surface contours without making assumptions about the underlying robot geometry or material properties. The S3 sheets can estimate the shape of target objects to an accuracy of ≈3 mm for an 80 mm long sheet. The authors show the S3 sheets estimating their shape while being deformed in 3D space and also attached to the surface of a silicone three‐chamber pneumatic bladder, highlighting the potential for shape‐sensing sheets to be applied, removed, and reapplied to soft robots for shape estimation. Finally, the S3 sheets detecting their own stretch up to 30% strain is demonstrated. The approach introduced herein provides a generalized method for measuring the shape of objects without making strong assumptions about the objects, thus achieving a modular, mechanics model‐free approach to proprioception for wearable electronics and soft robotics.

     
    more » « less
  3. A thin-film field-effect transistor (TFT) is a three-terminal device comprising source, drain, and gate electrodes, a dielectric layer, a semiconductor layer, and a substrate. The TFT is a fundamental building component in a variety of electronic devices. Developing an intrinsically stretchable TFT entails availability and usage of a functional material with elastomeric deformability in response to an externally applied stress. This represents a major materials challenge. In this article, we survey strategies to synthesize these elastomeric functional materials, and how these materials are assembled to fabricate intrinsically stretchable TFT devices. Developing solution-based printing technology to assemble intrinsically stretchable TFTs is considered a prospective strategy for wearable electronics for industrial adaptation in the near future. 
    more » « less
  4. Abstract

    π‐Conjugated polymers have drawn broad interest in flexible electronics due to their solution processability, light weight, and a combination of conducting and light‐emitting properties. However, achieving mechanical endurance and stretchability in freestanding conjugated polymers is still difficult. Surface‐assembly‐induced light‐emitting polymer nanosheets with prodigious mechanical strength and charge transport are reported. Transferring freestanding polymer films onto various templates with conformal contact results in electrical and optical strain sensors with a gauge factor of ≈29. Subsequent geometric engineering into kirigami structures of the polymer sheets further extends the strain accommodations 20‐fold without compromising electric conductivity or fluorescence properties. These as‐prepared semiconducting polymers represent a possible new material for emerging stretchable electronics.

     
    more » « less
  5. Silica-based distributed fiber-optic sensor (DFOS) systems have been a powerful tool for sensing strain, pressure, vibration, acceleration, temperature, and humidity in inextensible structures. DFOS systems, however, are incompatible with the large strains associated with soft robotics and stretchable electronics. We develop a sensor composed of parallel assemblies of elastomeric lightguides that incorporate continuum or discrete chromatic patterns. By exploiting a combination of frustrated total internal reflection and absorption, stretchable DFOSs can distinguish and measure the locations, magnitudes, and modes (stretch, bend, or press) of mechanical deformation. We further demonstrate multilocation decoupling and multimodal deformation decoupling through a stretchable DFOS–integrated wireless glove that can reconfigure all types of finger joint movements and external presses simultaneously, with only a single sensor in real time.

     
    more » « less