Based on the unique ubiquity of similar solvate structures found in solvate crystals and superconcentrated electrolytes, we performed a systematic study of four reported solvate crystals which consist of different lithium salts (i.e., LiMPSA, LiTFSI, LiDFOB, and LiBOB) solvated by acetonitrile (MeCN) based on first principles calculations. Based on the calculations, these solvate crystals are predicted to be electronic insulators and are expected to be similar to their insulating liquid counterpart (e.g., 4 M superconcentrated LiTFSI-MeCN electrolyte), which has been confirmed to be a promising electrolyte in lithium batteries. Although the MeCN molecule is highly unstable during the reduction process, it is found that the salt-MeCN solvate molecules (e.g., LiTFSI-(MeCN)2, LiDFOB-(MeCN)2) and their charged counterparts (anions and cations) are both thermodynamically and electrochemically stable, which can be confirmed by Raman vibrational modes through the unique characteristic variation in C≡N bond stretching of MeCN molecules. Therefore, in addition to the development of new solvents or lithium salts, we suggest it is possible to utilize the formation of superconcentrated electrolytes with improved electrochemical stability based on existing known compounds to facilitate the development of novel electrolyte design in advanced lithium batteries.
more »
« less
Practical and Instructive Approach to Purify Acetonitrile for a Wide Electrochemical Window
Because of its large electrochemical window, acetonitrile (MeCN) is one of the most widely used solvents in electrochemistry. It is a suitable solvent for nonaqueous electrolytes that allows studies of cathodic and anodic processes, but electrolyte purification remains challenging. As received, the high-performance liquid chromatography (HPLC) grade is unsuitable for most electroanalytical applications. We present an approach to optimize the purification of HPLC-grade acetonitrile to yield a tetrabutylammonium perchlorate (TBAP)/MeCN electrolyte for experiments in nonaqueous media. We used cyclic voltammetry (CV) to show the background due to impurities and to guide the experimental design to a background current acceptable for CVs of a 1 mM typical concentration of a redox-active molecule. We use 3A molecular sieves, followed by distillation over CaH2 with a final treatment with Al2O3. The optimized procedure yields CH3CN with small background currents, increasing the signal-to-noise ratio and minimizing chemical complications over a wide potential window. Our approach includes discriminating between impurities in the solvent and electrolyte salts; for TBAP, we recrystallize from ethyl acetate and 95 % ethanol. The process and theoretical guidelines apply to other nonaqueous electrolytes dealing with electroactive impurities, including organic molecules, oxygen, and water.
more »
« less
- Award ID(s):
- 2108462
- PAR ID:
- 10494560
- Publisher / Repository:
- Mexican Chemical Society
- Date Published:
- Journal Name:
- Journal of the Mexican Chemical Society
- ISSN:
- 1870-249X
- Page Range / eLocation ID:
- 393 to 402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robust multivalent ion interaction in electrodes is a grand challenge of next-generation battery research. In this manuscript, we design molecularly-precise nanographene cathodes that are coupled with metallic Zn anodes to create a new class of Zn-ion batteries. Our results indicate that while electrodes with graphite or flat nanographenes do not support Zn-ion intercalation, the larger intermolecular spacing in a twisted peropyrene enables peropyrene electrodes to facilitate reversible Zn-ion intercalation in an acetonitrile electrolyte. While most previous Zn-ion batteries utilize aqueous electrolytes, the finding that nonaqueous Zn electrolytes can support intercalation in nanographenes is important for expanding the design space of nonaqueous multivalent batteries, which often possess higher voltages than their aqueous counterparts. Furthermore, because these nanographenes can be synthesized using a bottom-up approach via alkyne benzannulation, this work paves the way for future battery electrodes that contain other molecularly-precise nanographenes with tailored electrochemical properties.more » « less
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.more » « less
-
Kamat, Prashant V (Ed.)Redox-active molecules, or redoxmers, in nonaqueous redox flow batteries often suffer from membrane crossover and low electrochemical stability. Transforming inorganic polyionic redoxmers established for aqueous batteries into nonaqueous candidates is an attractive strategy to address these challenges. Here we demonstrate such tailoring for hexacyanoferrate (HCF) by pairing the anions with tetra-n-butylammonium cation (TBA+). TBA3HCF has good solubility in acetonitrile and >1 V lower redox potential vs the aqueous counterpart; thus, the familiar aqueous catholyte becomes a new nonaqueous anolyte. The lowering of redox potential correlates with replacement of water by acetonitrile in the solvation shell of HCF, which can be traced to H-bond formation between water and cyanide ligands. Symmetric flow cells indicate exceptional stability of HCF polyanions in nonaqueous electrolytes and Nafion membranes completely block HCF crossover in full cells. Ion pairing of metal complexes with organic counterions can be effective for developing promising redoxmers for nonaqueous flow batteries.more » « less
-
The development of the multivalent electrolytes is a critical component to advance polyvalent energy storage technology. In this work, a new and simple nonaqueous zinc electrolyte is developed and investigated where a secondary amine is introduced as a cosolvent. The addition of dimethylamine (DMA) as a cosolvent in THF facilitates the solubilization of Zinc (II) bis(trifluoromethanesulfonyl)imde (Zn(TFSI)2) and results in a homogeneous electrolyte with reversible plating of zinc achieved at high coulombic efficiencies. The electrochemical properties of the developed electrolyte and the effects of the cosolvent and salt concentrations are systematically investigated. It was found that increasing the ratio of the cosolvent DMA in THF for a Zn(TFSI)2electrolyte leads to more facile kinetics, better ion solubilization, and higher ion mobility evidenced by up a significant increase in conductivity as well as the plating/stripping current densities. Increased Zn(TFSI)2salt concentration in a 2.0 M DMA in THF solvent mixture not only leads to a higher current density and conductivity, but also a higher molar conductivity due to a redissociation mechanism. The findings in this study are relevant and important to further understand and characterize multivalent electrolytes from a simple and effective electrolyte design strategy.more » « less
An official website of the United States government

