skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determining gas-phase chelation of zinc, cadmium, and copper cations with HisHis dipeptide using action spectroscopy and theoretical calculations
Using light generated by an infrared free electron laser, action spectroscopy was performed on doubly charged complexes of the metalated dipeptide histidyl-histidine (HisHis). Metal cations used were zinc, cadmium, and copper. Molecular dynamics and quantum-chemical calculations were used to screen a large number of conformers, whose theoretical infrared spectra were compared to the recorded action spectra of these metalated complexes. The zinc and cadmium spectra display dominant features associated with an iminol binding motif of the HisHis ligand, where the metal ion coordinates with both pros () nitrogens of the imidazole sidechains, the terminal carbonyl oxygen, and the backbone nitrogen for which the hydrogen ordinarily bound here has migrated to a carbonyl. The copper complex was difficult to assign to a single species, because a few predicted bands are absent from the experimental spectrum. The theoretical single point energies were also calculated for all structures examined, and DFT methods were found to describe the ion conformer populations in the case of the zinc and cadmium chelates better than the MP2 prediction.  more » « less
Award ID(s):
2313553
PAR ID:
10494581
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Mass Spectrometry
Volume:
495
Issue:
C
ISSN:
1387-3806
Page Range / eLocation ID:
117154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The gas-phase structures of zinc and cadmium complexes of lysine (Lys) are investigated via a combination of infrared multiple photon dissociation action spectroscopy and ab initio quantum chemical calculations. In order to unambiguously identify the experimentally observed species, [Zn(Lys−H)]+and CdCl+(Lys), the action spectra were compared to linear absorption spectra calculated at the B3LYP level of theory, using 6-311+G(d,p) and def2-TVZP basis sets for the zinc and cadmium systems, respectively. Single point energies were also calculated at the B3LYP, B3P86, MP2, and B3LYP-GD3BJ (accounting for empirical dispersion) levels of theory using larger basis sets. Identification of the experimentally formed isomers is possible through good agreement between infrared multiple photon dissociation action spectra and the theoretically predicted spectra. The [Zn(Lys−H)]+complex adopts a tridentate orientation involving the amino acid backbone amine and deprotonated carboxylic acid groups as well as the side-chain amine group, [Nα,CO,Nɛ]. The CdCl+(Lys) complex similarly adopts a tridentate chelation involving the amino acid backbone amine and carbonyl groups, as well as the side-chain amine group, [Nα,CO,Nɛ]. In both cases, the identified complexes are the lowest energy gas-phase structures at all levels of theory. 
    more » « less
  2. Arginine (Arg) complexes with Zn 2+ and Cd 2+ were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light from a free electron laser. Electrospray ionization generated complexes of deprotonated Arg with Zn 2+ , [Zn(Arg–H)] + , and Arg with CdCl + , CdCl + (Arg). Possible low-energy conformers of these species were found using quantum chemical calculations, and their calculated IR spectra were compared to experimentally measured IRMPD spectra. Calculations were performed at the B3LYP/6-311+G(d,p) level for Zn 2+ complexes and B3LYP/def2-TZVP with an SDD effective core potential on cadmium for CdCl + complexes. [Zn(Arg–H)] + was found to adopt a charge-solvated, tridentate [N,CO − ,N ω ′] structure where Zn 2+ binds to the backbone amine, carbonyl oxygen, and side-chain terminal guanidine nitrogen (N ω ′). The CdCl + (Arg) species was suggested to be a mixture of a dominant (∼85%) charge-solvated, tridentate [N,CO,N ω ′] structure where the CdCl + binds to the backbone amine, carbonyl, and side-chain imine (N ω ′) and a minor (∼15%) bidentate [N,CO − ](N ω ′H 2 + ) zwitterionic structure where the metal center binds to the backbone amine and carbonyl oxygen with intramolecular proton migration from the hydroxyl to the N ω ′ guanidine nitrogen (as designated in parenthesis). 
    more » « less
  3. The gas-phase structures of cationized glycine (Gly), including complexes with Li + , Na + , K + , Rb + , and Cs + , are examined using infrared multiple-photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser, in conjunction with ab initio calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) for the Li + , Na + , and K + complexes and at B3LYP/def2TZVP for the Rb + and Cs + complexes. Single-point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set for Li + , Na + , K + and the def2TZVPP basis set for Rb + and Cs + . The Li + and Na + complexes are identified as metal cation coordination to the amino nitrogen and carbonyl oxygen, [N,CO]-tt, although Na + (Gly) may have contributions from additional structures. The heavier metal cations coordinate to either the carbonyl oxygen, [CO]-cc, or the carbonyl oxygen and hydroxy oxygen, [CO,OH]-cc, with the former apparently preferred for Rb + and Cs + and the latter for K + . These two structures reside in a double-well potential and different levels of theory predict very different relative stabilities. Some experimental evidence is provided that MP2(full) theory provides the most accurate relative energies. 
    more » « less
  4. Vibrational frequencies for a selected set of transition metal carbonyl complexes are computed with various forms of density functional theory (B3LYP, BP86, M06, and M06-L), employing several different basis sets. The computed frequencies for the carbonyl stretches are compared to the experimental values obtained from gas phase infrared spectra of isolated neutrals and ions. Recommended carbonyl-stretch scaling factors which are developed vary significantly for different functionals, but there is little variation with basis set. Scaled frequencies compared to experimental spectra for cobalt and tantalum carbonyl cations reveal additional variations in multiplet patterns and relative band intensities for different functionals. 
    more » « less
  5. Cesiated complexes of the aliphatic amino acids (Gly, Ala, hAla, Val, Leu, and Ile) were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light from a free-electron laser (FEL). To identify structures, the experimental spectra were compared to linear spectra calculated at the B3LYP-GD3BJ/def2-TZVP level of theory. Relative energies at 0 and 298 K for various possible conformers of all complexes were calculated at B3LYP, B3LYP-GD3BJ, and MP2(full) levels using the def2-TZVP basis set. Spectral comparison for all complexes indicates that the dominant conformation has the cesium cation binding to the carbonyl and hydroxyl oxygens, [CO,OH]. This conclusion contrasts with previous work for Cs+(Gly), which suggested that the [CO] binding motif was prevalent. This dichotomy is explored theoretically in detail using coupled-cluster calculations with single, double, and perturbative triple excitations, CCSD(T), as well as advanced density functional theory (DFT) approaches. The comparisons show that the [CO,OH] – [CO] double-well potential found for most DFT approaches disappears at the higher level of theory with only the [CO,OH] well remaining. An exploration of this effect indicates that electron correlation is critically important and that DFT approaches incorrectly handle the internal hydrogen bonding in these molecules, thereby over-delocalizing the charges on the amino acid ligands. 
    more » « less