skip to main content


Title: Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational efficiency and generalization capacity. Learning accurate models of robot dynamics is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or position-only data. By design, LieFVINs preserve both the Lie group structure on which the dynamics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of interest. The proposed architecture learns surrogate discrete-time flow maps allowing accurate and fast prediction without numerical-integrator, neural-ODE, or adjoint techniques, which are needed for vector fields. Furthermore, the learnt discrete-time dynamics can be utilized with computationally scalable discrete-time (optimal) control strategies.  more » « less
Award ID(s):
1813635
NSF-PAR ID:
10494588
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MLResearchPress
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
211
ISSN:
2640-3498
Page Range / eLocation ID:
731-744
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work provides a finite-time stable disturbance observer design for the discretized dynamics of an unmanned vehicle in three-dimensional translational and rotational motion. The dynamics of this vehicle is discretized using a Lie group variational integrator as a grey box dynamics model that also accounts for unknown additive disturbance force and torque. Therefore, the input-state dynamics is partly known. The unknown dynamics is lumped into a single disturbance force and a single disturbance torque, both of which are estimated using the disturbance observer we design. This disturbance observer is finite-time stable (FTS) and works like a real-time machine learning scheme for the unknown dynamics. 
    more » « less
  2. Abstract: This paper investigates reduction by symmetries in simple hybrid mechanical systems, in particular, symplectic and Poisson reduction for simple hybrid Hamiltonian and Lagrangian systems. We give general conditions for whether it is possible to perform a symplectic reduction for simple hybrid Lagrangian system under a Lie group of symmetries and we also provide sufficient conditions for perform 
    more » « less
  3. A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [1] and [2]. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in [3] to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups. 
    more » « less
  4. Summary

    While system dynamics are usually derived in continuous time, respective model‐based optimal control problems can only be solved numerically, ie, as discrete‐time approximations. Thus, the performance of control methods depends on the choice of numerical integration scheme. In this paper, we present a first‐order discretization of linear quadratic optimal control problems for mechanical systems that is structure preserving and hence preferable to standard methods. Our approach is based on symplectic integration schemes and thereby inherits structure from the original continuous‐time problem. Starting from a symplectic discretization of the system dynamics, modified discrete‐time Riccati equations are derived, which preserve the Hamiltonian structure of optimal control problems in addition to the mechanical structure of the control system. The method is extended to optimal tracking problems for nonlinear mechanical systems and evaluated in several numerical examples. Compared to standard discretization, it improves the approximation quality by orders of magnitude. This enables low‐bandwidth control and sensing in real‐time autonomous control applications.

     
    more » « less
  5. The extended guiding-centre Lagrangian equations of motion are derived by the Lie-transform perturbation method under the assumption of time-dependent and inhomogeneous electric and magnetic fields that satisfy the standard guiding-centre space–time orderings. Polarization effects are introduced into the Lagrangian dynamics by the inclusion of the polarization drift velocity in the guiding-centre velocity and the appearance of finite-Larmor-radius corrections in the guiding-centre Hamiltonian and guiding-centre Poisson bracket.

     
    more » « less