- Award ID(s):
- 1813635
- NSF-PAR ID:
- 10494588
- Publisher / Repository:
- MLResearchPress
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 211
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 731-744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This work provides a finite-time stable disturbance observer design for the discretized dynamics of an unmanned vehicle in three-dimensional translational and rotational motion. The dynamics of this vehicle is discretized using a Lie group variational integrator as a grey box dynamics model that also accounts for unknown additive disturbance force and torque. Therefore, the input-state dynamics is partly known. The unknown dynamics is lumped into a single disturbance force and a single disturbance torque, both of which are estimated using the disturbance observer we design. This disturbance observer is finite-time stable (FTS) and works like a real-time machine learning scheme for the unknown dynamics.more » « less
-
Abstract: This paper investigates reduction by symmetries in simple hybrid mechanical systems, in particular, symplectic and Poisson reduction for simple hybrid Hamiltonian and Lagrangian systems. We give general conditions for whether it is possible to perform a symplectic reduction for simple hybrid Lagrangian system under a Lie group of symmetries and we also provide sufficient conditions for performmore » « less
-
A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [1] and [2]. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in [3] to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.more » « less
-
Summary While system dynamics are usually derived in continuous time, respective model‐based optimal control problems can only be solved numerically, ie, as discrete‐time approximations. Thus, the performance of control methods depends on the choice of numerical integration scheme. In this paper, we present a first‐order discretization of linear quadratic optimal control problems for mechanical systems that is structure preserving and hence preferable to standard methods. Our approach is based on symplectic integration schemes and thereby inherits structure from the original continuous‐time problem. Starting from a symplectic discretization of the system dynamics, modified discrete‐time Riccati equations are derived, which preserve the Hamiltonian structure of optimal control problems in addition to the mechanical structure of the control system. The method is extended to optimal tracking problems for nonlinear mechanical systems and evaluated in several numerical examples. Compared to standard discretization, it improves the approximation quality by orders of magnitude. This enables low‐bandwidth control and sensing in real‐time autonomous control applications.
-
The extended guiding-centre Lagrangian equations of motion are derived by the Lie-transform perturbation method under the assumption of time-dependent and inhomogeneous electric and magnetic fields that satisfy the standard guiding-centre space–time orderings. Polarization effects are introduced into the Lagrangian dynamics by the inclusion of the polarization drift velocity in the guiding-centre velocity and the appearance of finite-Larmor-radius corrections in the guiding-centre Hamiltonian and guiding-centre Poisson bracket.