skip to main content


This content will become publicly available on October 5, 2024

Title: Early origin and diverse phenotypic implementation of iridescent UV patterns for sexual signaling in pierid butterflies
Abstract

Iridescent ultraviolet (IUV) patterns on pierid butterfly wings are phenotypic adaptations commonly used as sexual signals, generated by scales with ultrastructural modifications. Pierid IUV patterns are sexually dichromatic, with reduced size in females, where conspicuous sexual signaling balances courtship against ecological predation. There have been no phylogenetic reconstructions of IUV within Pieridae and little morphological characterization of phenotypic diversity. Our genus-wide characterization of IUV revealed the uniform similarity of stacked lamellar ridges on the dorsal surface of cover scales. We tested a hypothesis of single versus multiple origins by reconstructing a phylogeny of 534 species (~43.2% described species), with all genera represented, and a trait matrix of 734 species (~59.4%) screened for IUV. A single, early dimorphic origin of IUV followed by several losses and gains received strong support, concluding that IUV patterns and structural coloration are old traits. Collectively, these results support the homology of IUV scales and patterns that diversified within several lineages, suggesting an interplay between female-mediated sexual selection and ecological predatory selection.

 
more » « less
Award ID(s):
2143339
NSF-PAR ID:
10494596
Author(s) / Creator(s):
; ; ;
Editor(s):
Foitzik, Susanne; Zelditch, Miriam
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
12
ISSN:
0014-3820
Page Range / eLocation ID:
2619 to 2630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Butterfly eyespots are wing patterns reminiscent of vertebrate eyes, formed by concentric rings of contrastingly coloured scales. Eyespots are usually located close to the wing margin and often regarded as the single most conspicuous pattern element of butterfly wing colour displays. Recent efforts to understand the processes involved in the formation of eyespots have been driven mainly by evo‐devo approaches focused on model species. However, patterns of change implied by phylogenetic relationships can also inform hypotheses about the underlying developmental mechanisms associated with the formation or disappearance of eyespots, and the limits of phenotypic diversity occurring in nature. Here we present a combined evidence phylogenetic hypothesis for the genusEunica, a prominent member of diverse Neotropical butterfly communities, that features notable variation among species in eyespot patterns on the ventral hind wing surface. The data matrix consists of one mitochondrial gene region (COI), four nuclear gene regions (GAPDH, RPS5, EF1a and Wingless) and 68 morphological characters. A combined cladistic analysis with all the characters concatenated produced a single most parsimonious tree that, although fully resolved, includes many nodes with modest branch support. The phylogenetic hypothesis presented corroborates a previously proposed morphological trend leading to the loss of eyespots, together with an increase in the size of the conserved eyespots, relative to outgroup taxa. Furthermore, wing colour pattern dimorphism and the presence of androconia suggest that the most remarkable instances of sexual dimorphism are present in the species ofEunicawith the most derived eyespot patterns, and are in most cases accompanied by autapomorphic combinations of scent scales and “hair pencils”. We discuss natural and sexual selection as potential adaptive explanations for dorsal and ventral wing patterns.

     
    more » « less
  2. Abstract

    A major challenge for studies assessing drivers of phenotypic divergence is the statistical comparison of taxa with unique, often unknown, evolutionary histories, and for which there are no clear expected trait values. Because many traits are fundamentally constrained by energy availability, we suggest that trait values predicted by scaling theories such as the metabolic theory of ecology (MTE) can provide baseline expectations. Here, we introduce a metabolic scaling‐based approach to test theory involving the direction and magnitude of ecological and sexual selection, using vocal frequency as an example target of selection. First, we demonstrate that MTE predicts the relationship between the natural log of body size and natural log of vocal frequency across 795 bird species, controlling for phylogeny. Family‐wide deviations in slope and intercepts from MTE estimates reveal taxa with potentially important differences in physiology or natural history. Further, species‐level frequency deviations from MTE expectations are predicted by factors related to ecological and sexual selection and, in some cases, provide evidence that differs from current understanding of the direction of selection and identity of ecological selective agents. For example, our approach lends additional support to the findings from many cross‐habitat studies that suggest that dense vegetation selects for lower frequency signals. However, our analysis also suggests that birds in non‐forested environments vocalize at frequencies higher than expected based on MTE, prompting intriguing questions about the selective forces in non‐forest environments that may act on vocal frequency. Additionally, vocal frequency deviates more strongly from MTE expectations among species with smaller repertoires and those with low levels of sexual dichromatism, complicating the use of these common sexual selection surrogates. Broad application of our metabolic scaling approach might provide an important complementary approach to understanding how selection shapes phenotypic evolution by offering a common baseline across studies and taxa and providing the basis to explore evolutionary trade‐offs within and among multicomponent and multimodal traits.

     
    more » « less
  3. Abstract

    Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour inAnolislizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap colouration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap colouration in the most widespread species of anole,Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation‐by‐distance did not seem to explain our results. On the other hand, these habitat‐specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation—parallel responses across islands—was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.

     
    more » « less
  4. Abstract

    Sexual signalling traits are often observed to diverge rapidly among populations, thereby playing a potentially key early role in the evolution of reproductive isolation. While often assumed to reflect divergent sexual selection among populations, patterns of sexual trait diversification might sometimes be biased along axes of standing additive genetic variation and covariation among trait components. Additionally, theory predicts that environmentally induced phenotypic variation might facilitate rapid trait evolution, suggesting that patterns of divergence between populations should mirror phenotypic plasticity within populations. Here, we evaluate the concordance between observed axes of multivariate sexual trait divergence and predicted divergence based on (1) interpopulation variation in sexual selection, (2) additive genetic variances and (3) temperature‐related phenotypic plasticity in male courtship song among geographically isolated populations of the Hawaiian swordtail cricket,Laupala cerasina, which exhibit sexual isolation due acoustic signalling traits. The major axis of multivariate divergence,dmax, accounted for 76% of variation among population male song trait means and was moderately correlated with interpopulation differences in directional sexual selection based on female preferences. However, the majority of additive genetic variance was largely oriented away from the direction of divergence, suggesting that standing genetic variation may not play a dominant role in the patterning of signal divergence. In contrast, the axis of phenotypic plasticity strongly mirrored patterns of interpopulation phenotypic divergence, which is consistent with a role for temperature‐related plasticity in facilitating instead of inhibiting male song evolution and sexual isolation in these incipient species. We propose potential mechanisms by which sexual selection might interact with phenotypic plasticity to facilitate the rapid acoustic diversification observed in this species and clade.

     
    more » « less
  5. Abstract

    Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull‐headed dung beetleOnthophagus tauruswhich is characterized by the polyphenic expression of horned (‘major’) and hornless (‘minor’) male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph‐specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph‐based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibiashapewas also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition acrossO. tauruspopulations. We discuss how sexual selection may shape morph‐specific integration, compensation, and allometry across populations.

     
    more » « less