This data package includes an ArcMap geodatabase for the Chihuahuan Desert Rangeland Research Center (CDRRC) pastures 1, 4, 14, and 15: one polygon feature class, one point feature class, associated attribute tables and metadata. The spatial data, CDRRC1_4_14_15_StateMap_v1.gdb.zip, represents the ecological sites and states on Pastures 1, 4, 14 and 15 on the Chihuahuan Desert Rangeland Research Center, and includes field traverse data. CDRRC1_4_14_15_StateMapMetadata.pdf and TraversePointsMetadata.pdf contain the geospatial metadata provided by ArcMap. CDRRC1_4_14_15_StateMap_v1.csv is the attribute table associated with the state map’s polygon feature class, and TraversePoints.xlsx is the attribute table associated with the traverse points feature class and includes a sheet containing detailed attribute metadata.
more »
« less
Alaska thermokarst monitoring and permafrost soils database 2023
This database contains data on site, soil stratigraphy, soil physical and chemical properties, Carbon-14 (C14) and stable isotope, and vegetation composition and structure acquired from permafrost soil surveys and thermokarst monitoring sites. The data are from projects that we have conducted, as well as data compiled from numerous other project and reports, that have emphasized the study of the intermediate layer of upper permafrost and the dynamic responses of permafrost to environmental conditions. This 2023 update includes data from our recent National Science Foundation (NSF)-funded project on the upper permafrost. The Access Database has 11 main data tables (tbl_) for site (environmental), soil stratigraphy, soil physical data, soil chemical data, water Oxygen-18 (O18), soil radiocarbon dates, vegetation cover, vegetation structure, study areas, personnel, and project data sources. The Site data includes information of location, observers, geomorphology, topography, hydrology, soil summary characteristics, pH and electrical conductivity (EC), soil classification, and vegetation cover by species. Soil stratigraphy has information on soil texture and ground ice. Soil physical and chemical data includes lab data on bulk density, moisture, carbon, and nitrogen. The database has 40 reference tables (REF_) that have codes and descriptions for variables used in site, soil stratigraphy, and vegetation cover tables. Query tables (qry_) are used to link data tables and reference tables to display data with names instead of codes. In addition to the permafrost soils information, the Site data includes topographic survey control information for repeat monitoring of thermokarst study areas. The data and metadata are provided in three formats. The Access relational database has all the data and reference tables, as well as the metadata associated with each table. Two Excel workbooks are provided that separately contain all the data tables and reference tables. Finally, 52 csv files are provided that contain the information on each individual data and reference table, as well as a metadata file that serially lists information on all the fields for all the tables.
more »
« less
- Award ID(s):
- 1820883
- PAR ID:
- 10494601
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- permafrost soil thermokarst monitoring vegetation radiocarbon dating isotopes
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Permafrost formation and degradation creates a highly patchy mosaic of boreal peatland ecosystems in Alaska driven by climate, fire, and ecological changes. To assess the biophysical factors affecting permafrost dynamics, we monitored permafrost and ecological conditions in central Alaska from 2005 to 2021 by measuring weather, land cover, topography, thaw depths, hydrology, soil properties, soil thermal regimes, and vegetation cover between burned (1990 fire) and unburned terrain. Climate data show large variations among years with occasional, extremely warm–wet summers and cold–snowless winters that affect permafrost stability. Microtopography and thaw depth surveys revealed both permafrost degradation and aggradation. Thaw depths were deeper in post-fire scrub compared to unburned black spruce and increased moderately during the last year, but analysis of historical imagery (1954–2019) revealed no increase in thermokarst rates due to fire. Recent permafrost formation was observed in older bogs due to an extremely cold–snowless winter in 2007. Soil sampling found peat extended to depths of 1.5–2.8 m with basal radiocarbon dates of ~5–7 ka bp, newly accumulating post-thermokarst peat, and evidence of repeated episodes of permafrost formation and degradation. Soil surface temperatures in post-fire scrub bogs were ~1 °C warmer than in undisturbed black spruce bogs, and thermokarst bogs and lakes were 3–5 °C warmer than black spruce bogs. Vegetation showed modest change after fire and large transformations after thermokarst. We conclude that extreme seasonal weather, ecological succession, fire, and a legacy of earlier geomorphic processes all affect the repeated formation and degradation of permafrost, and thus create a highly patchy mosaic of ecotypes resulting from widely varying ecological trajectories within boreal peatland ecosystems.more » « less
-
Climate change is destabilizing permafrost landscapes, affecting infrastructure, ecosystems, and human livelihoods. The rate of permafrost thaw is controlled by surface and subsurface properties and processes, all of which are potentially linked with each other. However, no standardized protocol exists for measuring permafrost thaw and related processes and properties in a linked manner. The permafrost thaw action group of the Terrestrial Multidisciplinary distributed Observatories for the Study of the Arctic Connections (T-MOSAiC) project has developed a protocol, for use by non-specialist scientists and technicians, citizen scientists, and indigenous groups, to collect standardized metadata and data on permafrost thaw. The protocol introduced here addresses the need to jointly measure permafrost thaw and the associated surface and subsurface environmental conditions. The parameters measured along transects include: snow depth, thaw depth, vegetation height, soil texture, and water level. The metadata collection includes data on timing of data collection, geographical coordinates, land surface characteristics (vegetation, ground surface, water conditions), as well as photographs. Our hope is that this openly available dataset will also be highly valuable for validation and parameterization of numerical and conceptual models, and thus to the broad community represented by the T-MOSAiC project.more » « less
-
Abstract. The hydrogen and oxygen stable isotope ratios of water have been used to identify sources, transport pathways, and phase-change processes within the water cycle, supporting hydrologic, forensic, ecologic, and hydroclimatic investigations. Here, we introduce a unique, open-access, global database of stable water isotope ratios (δ18O, δ17O, and δ2H) from various water types. This database facilitates data preservation, supports standardized metadata collection, and decreases the time investment for meta-analytic research and reference dataset discovery. As of July 2019, the database includes 231 586 samples from 52 210 sites, associated with 218 projects, spanning 1949 through 2019. Key information stored includes the hydrogen and oxygen isotope ratios, water type, collection date and time, site location, and project information. To promote rapid data discovery and collaboration, the database exposes metadata such as data owner contact information of embargoed data, but only permits downloads of public data. The database is supported by two companion apps, one for processing and upload of analytical data from laboratories and the other an iOS application that supports the digital collection of sample metadata.more » « less
-
This dataset documents all pedons (soil profiles) that have been located with GPS (2 meter horizontal accuracy) and have been described by genetic horizon for the Hubbard Brook Experimental Forest, within the White Mountain National Forest, NH. Soil profiles were observed between 1995 and 2022 and have been described and sampled at two levels of detail. Soil profiles in the pedon table were dug to bedrock or into the C horizon except where high boulder content limited excavation. The depth of all major soil horizons was measured and most pedons had descriptions written and physical samples collected. The horizon table contains physical observations and chemical analyses for the horizons sampled in the pedon table. Over 2500 of these horizons have had physical samples accessioned into the Hubbard Brook sample archive; the archived mass is included in the horizon table. The reconnaissance table includes pedons observed at a lower level of detail. Small pits were generally dug to a depth of 40 cm or greater, and minimal observations, as needed, were recorded to classify the soil profile by soil map unit (hpu). These data were collected to supplement the detailed observations in the previous two data tables in support of development of a spatial model of soil distribution for the entire Hubbard Brook Experimental Forest. No samples were collected from reconnaissance pits. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government
