skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in Larval Oyster Swimming Behavior with Salinity and Larval Age
Eastern oysters (Crassostrea virginica) are sessile, relying on a larval phase to disperse in estuaries. Oyster larval swimming behavior can alter dispersal trajectories and patterns of population connectivity. Experiments were conducted to test how both (1) acclimation time to new environmental conditions and (2) larval swimming behavior change with salinity and larval age. Acclimation time to changes in salinity was longest in lower salinity (6 ppt) and decreased with age. To test changes in behavior with salinity, larvae were placed into four salinities (6, 10, 16, and 22 ppt) where swimming was recorded. To test changes in behavior with age, larvae aged 6, 12, and 15 days were recorded. In both experiments, swimming paths were mapped in two dimensions, behavior of each path was categorized, and speed, direction, and acceleration were calculated. The frequency of upward, neutral, and downward swimming behaviors did not differ across salinity treatments but did vary with age, whereas the frequency of behavior types varied with both salinity and ontogeny. As an example, diving was observed more frequently in low salinity, and more downward helices were observed in moderate salinity, while younger larvae swam upward with more frequency than older larvae. Surprisingly, diving was observed in 10%–15% of all larvae across all ages. Given the consequence of larval behavior to marine invertebrate dispersal, changes in swimming over larval age and in response to environmental changes have important implications to marine population stability and structure.  more » « less
Award ID(s):
1756712
PAR ID:
10494726
Author(s) / Creator(s):
; ;
Publisher / Repository:
Biological Bulletin
Date Published:
Journal Name:
The Biological Bulletin
Volume:
244
Issue:
2
ISSN:
0006-3185
Page Range / eLocation ID:
94 to 102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The swimming behavior of invertebrate larvae can affect their dispersal, survival and settlement in the ocean. Modeling this behavior accurately poses unique challenges as behavior is controlled by both physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions. Food availability is naturally patchy and often occurs in shallow horizontal layers in the ocean. Also, larval swimming motions generally differ in the horizontal and vertical directions. In order to investigate behavioral response to food by ciliated larvae, we measured their behavioral anisotropy by quantifying deviations from a model based on isotropic diffusion. We hypothesized that larvae would increase horizontal swimming and decrease vertical swimming after encountering food, which could lead to aggregation at food layers. We considered Crepidula fornicata larvae, which are specifically of interest as they exhibit unsteady and variable swimming behaviors that are difficult to categorize. We tracked the larvae in still water with and without food, with a portion of the larvae starved beforehand. On average, larvae in the presence of food were observed higher in the water column, with higher swimming speeds and higher horizontal swimming velocities when compared with larvae without food. Starved larvae also exhibited higher vertical velocities in food, suggesting no aggregation behavior. Although most treatments showed strong anisotropy in larval behavior, we found that starved larvae without food exhibited approximately isotropic kinematics, indicating that behavioral anisotropy can vary with environmental history and conditions to enhance foraging success or mitigate food-poor environments. 
    more » « less
  2. Many marine animals have a biphasic life cycle in which demersal adults spawn pelagic larvae with high dispersal potential. An understanding of the spatial and temporal patterns of larval dispersal is critical for describing connectivity and local retention. Existing tools in oceanography, genetics, and ecology can each reveal only part of the overall pattern of larval dispersal. We combined insights from a coupled physical-biological model, parentage analyses, and field surveys to span larval dispersal pathways, endpoints, and recruitment of the convict surgeonfish Acanthurus triostegus . Our primary study region was the windward coast of O‘ahu, Hawai‘i. A high abundance of juvenile A . triostegus occurred along the windward coast, with the highest abundance inside Kāne‘ohe Bay. The output from our numerical model showed that larval release location accounted for most of the variation in simulated settlement. Seasonal variation in settlement probability was apparent, and patterns observed in model simulations aligned with in situ observations of recruitment. The bay acted as a partial retention zone, with larvae that were released within or entering the bay having a much higher probability of settlement. Genetic parentage analyses aligned with larval transport modeling results, indicating self-recruitment of A . triostegus within the bay as well as recruitment into the bay from sites outside. We conclude that Kāne‘ohe Bay retains reef fish larvae and promotes settlement based on concordant results from numerical models, parentage analyses, and field observations. Such interdisciplinary approaches provide details of larval dispersal and recruitment heretofore only partially revealed. 
    more » « less
  3. Anthropogenic salinization is a pervasive pollutant in much of the northeastern United States because of the widespread use of chemical deicing agents on roads. Although studies have examined the physiological effects of salinization on amphibians across life stages, behavioral responses to salinization of habitats are less studied. In this study, we experimentally test how salinity and temperature conditions experienced as larvae affect behavioral and physiological responses as juveniles. We first experimentally test whether juvenile Wood Frogs (Lithobates sylvaticus) can detect and avoid road salt in terrestrial soils and whether this avoidance behavior differs depending on temperature and salinity conditions in which individuals were raised as larvae. We also experimentally test whether temperature and salinity conditions experienced as larvae affect desiccation rates in juvenile Wood Frogs. We found a significant correlation between larval salinity conditions and choice of soil, with frogs raised in high salt aquatic conditions spending the majority of time on high salinity soils and frogs raised in low salt aquatic conditions spending the majority of time on low salinity soils. This behavioral response was muted in frogs raised in elevated temperature conditions. We were unable to detect a correlation between larval treatment and desiccation rate. Our experiments demonstrate that Wood Frogs can detect and respond to salinity levels in terrestrial habitats and that this juvenile response depends on environmental conditions experienced as larvae. 
    more » « less
  4. Dispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal. 
    more » « less
  5. The ocean has absorbed ~one third of the excess atmospheric carbon dioxide (CO2) released since the Industrial Revolution. When the ocean absorbs excess CO2, a series of chemical reactions occur that result in a reduction in seawater pH, a process called ocean acidification. The excess atmospheric CO2 is also resulting in warmer seawater temperatures. These stressors pose a threat to marine organisms, especially during earlier life stages (i.e., larvae). The larvae of species like the Florida stone crab (Menippe mercenaria) are free swimming, allowing a population to disperse and recruit into new habitats. After release, stone crab larvae undergo vertical swimming excursions in response to abiotic stimuli (gravity, light, pressure) allowing them to control their depth. Typically, newly hatched larvae respond to abiotic cues that would promote a shallower depth distribution, where surface currents can transport them offshore to complete development. As larvae develop offshore, they become less sensitive to certain abiotic stimuli, which promotes a deeper depth distribution that may expose them to variable current speeds, thus influencing the direction of advection (horizontal movement). Environmental stressors like ocean acidification and elevated seawater temperatures may also impact the larvae’s natural response to these abiotic stimuli throughout ontogeny (development). Changes in their natural swimming behavior due to climate stressors could, therefore, influence the transport and dispersal of the species. This guided-inquiry lesson challenges introductory marine biology and oceanography students to determine how future ocean pH and temperature projections could impact the swimming behavior of Florida stone crab larvae. 
    more » « less