skip to main content

Title: A novel cross‐shore transport mechanism revealed by subsurface, robotic larval mimics: Internal wave deformation of the background velocity field

Coastal physical processes are essential for the cross‐shore transport of meroplanktonic larvae to their benthic adult habitats. To investigate these processes, we released a swarm of novel, trackable, subsurface vehicles, the Mini‐Autonomous Underwater Explorers (M‐AUEs), which we programmed to mimic larval depth‐keeping behavior. The M‐AUE swarm measured a sudden net onshore transport of 30–70 m over 15–20 min, which we investigated in detail. Here, we describe a novel transport mechanism of depth‐keeping plankton revealed by these observations. In situ measurements and models showed that, as a weakly nonlinear internal wave propagated through the swarm, it deformed surface‐intensified, along‐isopycnal background velocities downward, accelerating depth‐keeping organisms onshore. These higher velocities increased both the depth‐keepers' residence time in the wave and total cross‐shore displacement, leading to wave‐induced transports twice those of fully Lagrangian organisms and four times those associated with the unperturbed background currents. Our analyses also show that integrating velocity time series from virtual larvae or mimics moving with the flow yields both larger and more accurate transport estimates than integrating velocity time series obtained at a point (Eulerian). The increased cross‐shore transport of organisms capable of vertical swimming in this wave/background‐current system is mathematically analogous to the increase in onshore transport associated with horizontal swimming in highly nonlinear internal waves. However, the mechanism described here requires much weaker swimming speeds (mm s−1vs. cm s−1) to achieve significant onshore transports, and meroplanktonic larvae only need to orient themselves vertically, not horizontally.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Page Range / eLocation ID:
p. 1456-1470
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cross‐shore velocities in the coastal ocean typically vary with depth. The direction and magnitude of transport experienced by meroplanktonic larvae will therefore be influenced by their vertical position. To quantify how swimming behavior and vertical position in internal waves influence larval cross‐shore transport in the shallow (~ 20 m), stratified coastal waters off Southern California, we deployed swarms of novel, subsurface larval mimics, the Mini‐Autonomous Underwater Explorers (M‐AUEs). The M‐AUEs were programmed to maintain a specified depth, and were deployed near a mooring. Transport of the M‐AUEs was predominantly onshore, with average velocities up to 14 cm s−1. To put the M‐AUE deployments into a broader context, we simulated > 500 individual high‐frequency internal waves observed at the mooring over a 14‐d deployment; in each internal wave, we released both depth‐keeping and passive virtual larvae every meter in the vertical. After the waves' passage, depth‐keeping virtual larvae were usually found closer to shore than passive larvae released at the same depth. Near the top of the water column (3–5‐m depth), ~ 20% of internal waves enhanced onshore transport of depth‐keeping virtual larvae by ≥ 50 m, whereas only 1% of waves gave similar enhancements to passive larvae. Our observations and simulations showed that depth‐keeping behavior in high‐frequency internal waves resulted in enhanced onshore transport at the top of the water column, and reduced offshore dispersal at the bottom, compared to being passive. Thus, even weak depth‐keeping may allow larvae to reach nearshore adult habitats more reliably than drifting passively.

    more » « less
  2. Abstract

    The meroplanktonic larvae of many invertebrate and vertebrate species rely on physical transport to move them across the shelf to their adult habitats. One potential mechanism for cross‐shore larval transport is Stokes drift in internal waves. Here, we develop theory to quantify the Stokes velocities of neutrally buoyant and depth‐keeping organisms in linear internal waves in shallow water. We apply the analyses to theoretical and measured internal wave fields, and compare results with a numerical model. Near the surface and bottom boundaries, both neutrally buoyant and depth‐keeping organisms were transported in the direction of the wave's phase propagation. However, neutrally buoyant organisms were transported in the opposite direction of the wave's phase at mid depths, while depth‐keeping organisms had zero net transport there. Weakly depth‐keeping organisms had Stokes drifts between the perfectly depth‐keeping and neutrally buoyant organisms. For reasonable wave amplitudes and phase speeds, organisms would experience horizontal Stokes speeds of several centimeters per second—or a few kilometers per day in a constant wave field. With onshore‐polarized internal waves, Stokes drift in internal waves presents a predictable mechanism for onshore transport of meroplanktonic larvae and other organisms near the surface, and offshore transport at mid depths.

    more » « less
  3. Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior. 
    more » « less
  4. Abstract

    Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.

    more » « less
  5. Abstract

    Strong and sustained winds can drive dramatic hydrodynamic responses in density‐stratified lakes, with the associated transport and mixing impacting water quality, ecosystem function, and the stratification itself. Analytical expressions offer insight into the dynamics of stratified lakes during severe wind events. However, it can be difficult to predict the aggregate response of a natural system to the superposition of hydrodynamic phenomena in the presence of complex bathymetry and when forced by variable wind patterns. Using an array of current, temperature, and water quality measurements at the upwind shore, we detail the hydrodynamic response of deep, rotationally influenced Lake Tahoe to three strong wind events during late spring. Sustained southwesterly winds in excess of 10 m s−1drove upwelling at the upwind shore (characteristic of non‐rotational upwelling setup), with upward excursions of deep water exceeding 70 m for the strongest event. Hypolimnetic water, with elevated concentrations of chlorophyllaand nitrate, was advected toward the nearshore, but this water rapidly returned to depth with the relaxation of upwelling after the winds subsided. The relaxation of upwelling exhibited rotational influence, highlighted by an along‐shore, cyclonic front characteristic of a Kelvin wave‐driven coastal jet, with velocities exceeding 25 cm s−1. The rotational front also produced downwelling to 100 m, transporting dissolved oxygen to depth. More complex internal wave features followed the passage of these powerful internal waves. Results emphasize the complexity of these superimposed hydrodynamic phenomena in natural systems, providing a conceptual reference for the role upwelling events may play in lake ecosystems.

    more » « less