skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: "I need a better description": An Investigation Into User Expectations For Differential Privacy
Despite recent widespread deployment of differential privacy, relatively little is known about what users think of differential privacy. In this work, we seek to explore users' privacy expectations related to differential privacy. Specifically, we investigate (1) whether users care about the protections afforded by differential privacy, and (2) whether they are therefore more willing to share their data with differentially private systems. Further, we attempt to understand (3) users' privacy expectations of the differentially private systems they may encounter in practice and (4) their willingness to share data in such systems. To answer these questions, we use a series of rigorously conducted surveys (n=2424).   We find that users care about the kinds of information leaks against which differential privacy protects and are more willing to share their private information when the risks of these leaks are less likely to happen.  Additionally, we find that the ways in which differential privacy is described in-the-wild haphazardly set users' privacy expectations, which can be misleading depending on the deployment. We synthesize our results into a framework for understanding a user's willingness to share information with differentially private systems, which takes into account the interaction between the user's prior privacy concerns and how differential privacy is described.  more » « less
Award ID(s):
2138834 1942772
PAR ID:
10494749
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Privacy and Confidentiality
Date Published:
Journal Name:
Journal of Privacy and Confidentiality
Volume:
13
Issue:
1
ISSN:
2575-8527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Local differential privacy is a widely studied restriction on distributed algorithms that collect aggregates about sensitive user data, and is now deployed in several large systems. We initiate a systematic study of a fundamental limitation of locally differentially private protocols: they are highly vulnerable to adversarial manipulation. While any algorithm can be manipulated by adversaries who lie about their inputs, we show that any noninteractive locally differentially private protocol can be manipulated to a much greater extent---when the privacy level is high, or the domain size is large, a small fraction of users in the protocol can completely obscure the distribution of the honest users' input. We also construct protocols that are optimally robust to manipulation for a variety of common tasks in local differential privacy. Finally, we give simple experiments validating our  theoretical results, and demonstrating that protocols that are optimal without manipulation can have dramatically different levels of robustness to manipulation. Our results suggest caution when deploying local differential privacy and reinforce the importance of efficient cryptographic  techniques for the distributed emulation of centrally differentially private mechanisms. 
    more » « less
  2. Users face various privacy risks in smart homes, yet there are limited ways for them to learn about the details of such risks, such as the data practices of smart home devices and their data flow. In this paper, we present Privacy Plumber, a system that enables a user to inspect and explore the privacy "leaks" in their home using an augmented reality tool. Privacy Plumber allows the user to learn and understand the volume of data leaving the home and how that data may affect a user's privacy -- in the same physical context as the devices in question, because we visualize the privacy leaks with augmented reality. Privacy Plumber uses ARP spoofing to gather aggregate network traffic information and presents it through an overlay on top of the device in an smartphone app. The increased transparency aims to help the user make privacy decisions and mend potential privacy leaks, such as instruct Privacy Plumber on what devices to block, on what schedule (i.e., turn off Alexa when sleeping), etc. Our initial user study with six participants demonstrates participants' increased awareness of privacy leaks in smart devices, which further contributes to their privacy decisions (e.g., which devices to block). 
    more » « less
  3. Abstract Economics and social science research often require analyzing datasets of sensitive personal information at fine granularity, with models fit to small subsets of the data. Unfortunately, such fine-grained analysis can easily reveal sensitive individual information. We study regression algorithms that satisfy differential privacy , a constraint which guarantees that an algorithm’s output reveals little about any individual input data record, even to an attacker with side information about the dataset. Motivated by the Opportunity Atlas , a high-profile, small-area analysis tool in economics research, we perform a thorough experimental evaluation of differentially private algorithms for simple linear regression on small datasets with tens to hundreds of records—a particularly challenging regime for differential privacy. In contrast, prior work on differentially private linear regression focused on multivariate linear regression on large datasets or asymptotic analysis. Through a range of experiments, we identify key factors that affect the relative performance of the algorithms. We find that algorithms based on robust estimators—in particular, the median-based estimator of Theil and Sen—perform best on small datasets (e.g., hundreds of datapoints), while algorithms based on Ordinary Least Squares or Gradient Descent perform better for large datasets. However, we also discuss regimes in which this general finding does not hold. Notably, the differentially private analogues of Theil–Sen (one of which was suggested in a theoretical work of Dwork and Lei) have not been studied in any prior experimental work on differentially private linear regression. 
    more » « less
  4. Differential privacy has emerged as a leading theoretical framework for privacy-preserving data gathering and analysis. It allows meaningful statistics to be collected for a population without revealing ``too much'' information about any individual member of the population. For software profiling, this machinery allows profiling data from many users of a deployed software system to be collected and analyzed in a privacy-preserving manner. Such a solution is appealing to many stakeholders, including software users, software developers, infrastructure providers, and government agencies. We propose an approach for differentially-private collection of frequency vectors from software executions. Frequency information is reported with the addition of random noise drawn from the Laplace distribution. A key observation behind the design of our scheme is that event frequencies are closely correlated due to the static code structure. Differential privacy protections must account for such relationships; otherwise, a seemingly-strong privacy guarantee is actually weaker than it appears. Motivated by this observation, we propose a novel and general differentially-private profiling scheme when correlations between frequencies can be expressed through linear inequalities. Using a linear programming formulation, we show how to determine the magnitude of random noise that should be added to achieve meaningful privacy protections under such linear constraints. Next, we develop an efficient instance of this general machinery for an important subclass of constraints. Instead of LP, our solution uses a reachability analysis of a constraint graph. As an exemplar, we employ this approach to implement differentially-private method frequency profiling for Android apps. Any differentially-private scheme has to balance two competing aspects: privacy and accuracy. Through an experimental study to characterize these trade-offs, we (1) show that our proposed randomization achieves much higher accuracy compared to related prior work, (2) demonstrate that high accuracy and high privacy protection can be achieved simultaneously, and (3) highlight the importance of linear constraints in the design of the randomization. These promising results provide evidence that our approach is a good candidate for privacy-preserving frequency profiling of deployed software. 
    more » « less
  5. ‘Interdependent’ privacy violations occur when users share private photos and information about other people in social media without permission. This research investigated user characteristics associated with interdependent privacy perceptions, by asking social media users to rate photo-based memes depicting strangers on the degree to which they were too private to share. Users also completed questionnaires measuring social media usage and personality. Separate groups rated the memes on shareability, valence, and entertainment value. Users were less likely to share memes that were rated as private, except when the meme was entertaining or when users exhibited dark triad characteristics. Users with dark triad characteristics demonstrated a heightened awareness of interdependent privacy and increased sharing of others’ photos. A model is introduced that highlights user types and characteristics that correspond to different privacy preferences: privacy preservers, ignorers, and violators. We discuss how interventions to support interdependent privacy must effectively influence diverse users. 
    more » « less