skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plastics can be used more sustainably in agriculture
Abstract Plastics have become an integral component in agricultural production as mulch films, nets, storage bins and in many other applications, but their widespread use has led to the accumulation of large quantities in soils. Rational use and reduction, collection, reuse, and innovative recycling are key measures to curb plastic pollution from agriculture. Plastics that cannot be collected after use must be biodegradable in an environmentally benign manner. Harmful plastic additives must be replaced with safer alternatives to reduce toxicity burdens and included in the ongoing negotiations surrounding the United Nations Plastics Treaty. Although full substitution of plastics is currently not possible without increasing the overall environmental footprint and jeopardizing food security, alternatives with smaller environmental impacts should be used and endorsed within a clear socio-economic framework. Better monitoring and reporting, technical innovation, education and training, and social and economic incentives are imperative to promote more sustainable use of plastics in agriculture.  more » « less
Award ID(s):
2152514
PAR ID:
10494761
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we show production pathways for greenhouse gas (GHG)-negative bio-based plastics from 2nd and 3rd generation feedstocks. We focus on bio-based plastics that are technically capable of replacing 80% of the global plastic market. By presenting life cycle inventories and discussing GHG-emissions hotspots, this work will inform stakeholders along the plastic supply chain of the necessary steps to achieving net-zero emissions by 2050, and potentially, how to drive net-uptake. This work is of critical importance given the overwhelming mass of plastic produced annually and the resulting CO2 emissions. To conduct this assessment, we derive life cycle inventories for nine different bio-based plastics and address the impact of methodological choices, such as allocation method, on the resulting 100a global warming potential (GWP). Our findings show that resources used and processing methods implemented have significant effects on the potential for us to derive carbon-negative plastics. Furthermore, we find that environmental impact quantification methods greatly influence the perceived GWP of such processes. For example, economic and mass allocation methods resulted in an apparent increase in GWP of up to 39% and 166%, respectively, compared to no allocation for bio-based plastics made from 2nd generation crops, whereas mass allocation resulted in the lowest GWP for bio-based plastics made from 1st generation crops. In considering environmental impact hotspots, our findings show that decarbonization of thermal energy and electricity, reduced use of ammonia-based fertilizer, renewable hydrogen production, use of bio-based alternatives for petrochemicals and plasticizers, enzyme production pathways from 2nd generation crops, and more efficient biomass conversion processes to reduce feedstock inputs may be critical steps in creating GHG negative bio-based plastics in the future. 
    more » « less
  2. Abstract This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment. 
    more » « less
  3. Sustainable and economically viable plastic recycling methodologies are vital for addressing the increasing environmental consequences of single-use plastics. In this study, we evaluate the plastic waste management value for the state of Georgia, US and investigate the potential of introducing novel depolymerization methods within the network. An equation-based formulation is developed to identify the optimum supply-chain design given the geographic location of existing facilities. Chemical recycling technologies that have received increasing attention are evaluated as candidate technologies to be integrated within the network. The optimum supply-chain design is selected based on environmental and economic objectives. The designed network of pathways uses a mix of different technologies (chemical and mechanical recycling) in a way that are both economically environmentally sound. 
    more » « less
  4. Abstract Biodegradable plastics have been proposed as an alternative to conventional plastics for many applications, such as single-use plastic bags, disposable cutleries and tablewares, and agricultural plastic mulch films. However, concerns have arisen about environmental sustainability of biodegradable plastics, especially regarding degradability, generation of biodegradable micro- and nanoplastics, and release of additives. Here, we critically evaluate literature on the degradation and ecotoxicity of biodegradable plastics with the consideration of environmentally relevant concentrations. Our evaluation suggests that, provided with proper disposal and full biodegradation, biodegradable plastics, including biodegradable micro- and nanoplastics, would not accumulate substantially in the environment and would be far from reaching concentrations at which negative impacts on ecosystems can be expected. In addition, we highlight existing regulatory efforts to prevent adverse ecotoxicity of biodegradable plastics. To ensure timely biodegradation under various disposal conditions, we propose to calibrate the actual biodegradability in disposal environments against the intrinsic biodegradability in standards. Further, we recommend to supplement biodegradability certificates on biodegradable plastics with clear disposal instructions, to ensure proper end-of-life management. With proper testing, comprehensive labeling, and effective management, we believe that, for certain applications, biodegradable plastics are a promising substitute for conventional plastics. 
    more » « less
  5. Abstract Environmental contamination by plastic waste is a growing threat to the environment and human health. Unfortunately, most post‐consumer plastics are still disposed of in landfills, even plastics that could be easily recycled via simple chemical processes. This disconnect between technology and implementation is partly due to the economic barrier posed by multi‐step processes that convert plastic waste into commodity goods. There is an urgent need for green methods to convert plastic waste directly into marketable commodities via simple processes. Herein we report a simple, single‐stage process to chemically recycle poly(ethylene terephthalate) (PET) to yield composites having thermal and mechanical properties that are competitive with commercial structural materials like Portland cement. In this protocol, a mixture of PET and geraniol are heated with elemental sulfur. In this process, transesterification between geraniol and PET with concomitant thiocracking of the PET backbone leads to the formation of a highly‐crosslinked sulfur–PET–geraniol (SPG) network composite. The composite exhibited compressive strength (23.1 MPa) greater than that required for Portland cement to be used in building foundations. This new, single‐stage chemical recycling strategy thus employs a bio‐olefin and waste sulfur to convert PET waste into a durable composite that could serve as a sustainable alternative to traditional cements. 
    more » « less