skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Degrading Data to Save the Planet
Storage capacity demand is projected to grow exponentially in the coming decade and so will its contribution to the overall carbon footprint of computing devices. In recent years, cloud providers and device vendors have substantially reduced their carbon impact through improved power consumption and product distribution. However, by 2030, the manufacturing of flash-based storage devices will account for 1.7% of carbon emissions in the world. Therefore, reducing production-related carbon emissions of storage is key to sustainability in computing devices. We present Sustainability-Oriented Storage (SOS), a new host-device co-design for personal storage devices, which opportunistically improves storage sustainability by: (1) targeting widely-produced flash-based personal storage devices; (2) reducing hardware production through optimizing bit density in existing materials, up to 50%; and (3) exploiting an underutilized gap between the effective lifespan of personal devices and longer lifespan of their underlying flash. SOS automatically stores low-priority files, occupying most personal storage capacities, on high-density flash memories, currently designated for nearline storage. To avoid data loss, low-priority files are allowed to slightly degrade in quality over time. Switching to high-density memories, which maximize production material utilization, reduces the overall carbon footprint of personal storage devices.  more » « less
Award ID(s):
2154771
PAR ID:
10494788
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 19th Workshop on Hot Topics in Operating Systems
ISBN:
9798400701955
Page Range / eLocation ID:
61 to 69
Format(s):
Medium: X
Location:
Providence RI USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Reducing the environmental footprint of electronics and computing devices requires new tools that empower designers to make informed decisions about sustainability during the design process itself. This is not possible with current tools for life cycle assessment (LCA) which require substantial domain expertise and time to evaluate the numerous chips and other components that make up a device. We observe first that informed decision-making does not require absolute metrics and can instead be done by comparing designs. Second, we can use domain-specific heuristics to perform these comparisons. We combine these insights to develop DeltaLCA, an open-source interactive design tool that addresses the dual challenges of automating life cycle inventory generation and data availability by performing comparative analyses of electronics designs. Users can upload standard design files from Electronic Design Automation (EDA) software and the tool will guide them through determining which one has greater carbon footprints. DeltaLCA leverages electronics-specific LCA datasets and heuristics and tries to automatically rank the two designs, prompting users to provide additional information only when necessary. We show through case studies DeltaLCA achieves the same result as evaluating full LCAs, and that it accelerates LCA comparisons from eight expert-hours to a single click for devices with ~30 components, and 15 minutes for more complex devices with ~100 components. 
    more » « less
  2. Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions. 
    more » « less
  3. Flash memory devices are winning the competition for storage density against magnetic recording devices. This outcome results from advances in physics that allow storage of more than one bit per cell, coupled with advances in signal processing that reduce the effect of physical instabilities. Constrained codes are used in storage to avoid problematic patterns. Recently, we introduced binary symmetric lexicographically-ordered constrained codes (LOCO codes) for data storage and transmission. This paper introduces simple constrained codes that support non-binary physical gates in multi, triple, quad, and the currently-in-development penta-level cell (M/T/Q/P-LC) Flash memories. The new codes can be easily modified if problematic patterns change with time. These codes are designed to mitigate inter-cell interference, which is a critical source of error in Flash devices. The new codes are called q-ary asymmetric LOCO codes (QA-LOCO codes), and the construction subsumes codes previously designed for single-level cell (SLC) Flash devices (ALOCO codes). QA-LOCO codes work for a Flash device with any number, q, of levels per cell. For q ≥ 4, we show that QA-LOCO codes can achieve rates greater than 0.95log 2 q information bits per coded symbol. Capacity-achieving rates, affordable encoding-decoding complexity, and ease of reconfigurability support the growing improvement of M/T/Q/P-LC Flash memory devices, as well as lifecycle management as the characteristics of these devices change with time. 
    more » « less
  4. Computational storage adds computing to storage devices, providing potential benefits in offload, data-reduction, and lower energy. Successful computational SSD architectures should match growing flash bandwidth, which in turn requires high SSD DRAM memory bandwidth. This creates a memory wall scaling problem, resulting from SSDs’ stringent power and cost constraints. A survey of recent computational SSD research shows that many computational storage offloads are suited to stream computing. To exploit this opportunity, we propose a novel general-purpose computational SSD and core architecture, called ASSASIN (Architecture Support for Stream computing to Accelerate computatIoNal Storage). ASSASIN provides a unified set of compute engines between SSD DRAM and the flash array. This eliminates the SSD DRAM bottleneck by enabling direct computing on flash data streams. ASSASIN further employs a crossbar to achieve performance even when flash data layout is uneven and preserve independence for page layout decisions in the flash translation layer. With stream buffers and scratchpad memories, ASSASIN core’s memory hierarchy and instruction set extensions provide superior low-latency access at low-power and effectively keep streaming flash data out of the in-SSD cache-DRAM memory hierarchy, thereby solving the memory wall. Evaluation shows that ASSASIN delivers 1.5x - 2.4x speedup for offloaded functions compared to state-of-the-art computational SSD architectures. Further, ASSASIN’s streaming approach yields 2.0x power efficiency and 3.2x area efficiency improvement. And these performance benefits at the level of computational SSDs translate to 1.1x - 1.5x end-to-end speedups on data analytics workloads. 
    more » « less
  5. Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of "files". In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided. 
    more » « less