Despite AI’s significant growth, its “black box” nature creates challenges in generating adequate trust. Thus, it is seldom utilized as a standalone unit in high-risk applications. Explainable AI (XAI) has emerged to help with this problem. Designing effectively fast and accurate XAI is still challenging, especially in numerical applications. We propose a novel XAI model named Transparency Relying Upon Statistical Theory (TRUST) for XAI. TRUST XAI models the statistical behavior of the underlying AI’s outputs. Factor analysis is used to transform the input features into a new set of latent variables. We use mutual information to rank these parameters and pick only the most influential ones on the AI’s outputs and call them “representatives” of the classes. Then we use multi-model Gaussian distributions to determine the likelihood of any new sample belonging to each class. The proposed technique is a surrogate model that is not dependent on the type of the underlying AI. TRUST is suitable for any numerical application. Here, we use cybersecurity of the industrial internet of things (IIoT) as an example application. We analyze the performance of the model using three different cybersecurity datasets, including “WUSTLIIoT”, “NSL-KDD”, and “UNSW”. We also show how TRUST is explained to the user. The TRUST XAI provides explanations for new random samples with an average success rate of 98%. Also, the advantages of our model over another popular XAI model, LIME, including performance, speed, and the method of explainability are evaluated. 
                        more » 
                        « less   
                    
                            
                            ProtoShotXAI: Using Prototypical Few-Shot Architecture for Explainable AI
                        
                    
    
            Unexplainable black-box models create scenarios where anomalies cause deleterious responses, thus creating unacceptable risks. These risks have motivated the field of eXplainable Artificial Intelligence (XAI) which improves trust by evaluating local interpretability in black-box neural networks. Unfortunately, the ground truth is unavailable for the model's decision, so evaluation is limited to qualitative assessment. Further, interpretability may lead to inaccurate conclusions about the model or a false sense of trust. We propose to improve XAI from the vantage point of the user's trust by exploring a black-box model's latent feature space. We present an approach, ProtoShotXAI, that uses a Prototypical few-shot network to explore the contrastive manifold between nonlinear features of different classes. A user explores the manifold by perturbing the input features of a query sample and recording the response for a subset of exemplars from any class. Our approach is a locally interpretable XAI model that can be extended to, and demonstrated on, few-shot networks. We compare ProtoShotXAI to the state-of-the-art XAI approaches on MNIST, Omniglot, and ImageNet to demonstrate, both quantitatively and qualitatively, that ProtoShotXAI provides more flexibility for model exploration. Finally, ProtoShotXAI also demonstrates novel explainability and detectability on adversarial samples. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247614
- PAR ID:
- 10494790
- Publisher / Repository:
- JMLR
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 24
- Issue:
- 325
- ISSN:
- 1532-4435
- Page Range / eLocation ID:
- 1-49
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.more » « less
- 
            Abstract Artificial neural networks are increasingly used for geophysical modeling to extract complex nonlinear patterns from geospatial data. However, it is difficult to understand how networks make predictions, limiting trust in the model, debugging capacity, and physical insights. EXplainable Artificial Intelligence (XAI) techniques expose how models make predictions, but XAI results may be influenced by correlated features. Geospatial data typically exhibit substantial autocorrelation. With correlated input features, learning methods can produce many networks that achieve very similar performance (e.g., arising from different initializations). Since the networks capture different relationships, their attributions can vary. Correlated features may also cause inaccurate attributions because XAI methods typically evaluate isolated features, whereas networks learn multifeature patterns. Few studies have quantitatively analyzed the influence of correlated features on XAI attributions. We use a benchmark framework of synthetic data with increasingly strong correlation, for which the ground truth attribution is known. For each dataset, we train multiple networks and compare XAI-derived attributions to the ground truth. We show that correlation may dramatically increase the variance of the derived attributions, and investigate the cause of the high variance: is it because different trained networks learn highly different functions or because XAI methods become less faithful in the presence of correlation? Finally, we show XAI applied to superpixels, instead of single grid cells, substantially decreases attribution variance. Our study is the first to quantify the effects of strong correlation on XAI, to investigate the reasons that underlie these effects, and to offer a promising way to address them.more » « less
- 
            While machine learning classifier models become more widely adopted, opaque “black-box” models remain mostly inscrutable for a variety of reasons. Since their applications increasingly involve decisions impacting the lives of humans, there is increasing demand that their predictions be understandable to humans. Of particular interest in eXplainable AI (XAI) is the interpretability of explanations, i.e., that a model’s prediction should be understandable in terms of the input features. One popular approach is LIME, which offers a model-agnostic framework for explaining any classifier. However, questions remain about the limitations and vulnerabilities of such post-hoc explainers. We have built a tool for generating synthetic tabular data sets which enables us to probe the explanation system opportunistically based on its architecture. In this paper, we report on our success in revealing a scenario where LIME’s explanation violates local faithfulness.more » « less
- 
            Abstract In recent years, predictive machine learning models have gained prominence across various scientific domains. However, their black-box nature necessitates establishing trust in them before accepting their predictions as accurate. One promising strategy involves employing explanation techniques that elucidate the rationale behind a model’s predictions in a way that humans can understand. However, assessing the degree of human interpretability of these explanations is a nontrivial challenge. In this work, we introduce interpretation entropy as a universal solution for evaluating the human interpretability of any linear model. Using this concept and drawing inspiration from classical thermodynamics, we present Thermodynamics-inspired Explainable Representations of AI and other black-box Paradigms, a method for generating optimally human-interpretable explanations in a model-agnostic manner. We demonstrate the wide-ranging applicability of this method by explaining predictions from various black-box model architectures across diverse domains, including molecular simulations, text, and image classification.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    