We relate the geometry of Schubert varieties in twisted affine Grassmannian and the nilpotent varieties in symmetric spaces. This extends some results of Achar–Henderson in the twisted setting. We also get some applications to the geometry of the order 2 nilpotent varieties in certain classical symmetric spaces.
more »
« less
Which Schubert Varieties are Hessenberg Varieties?
More Like this
-
-
Abstract We generalize the Guth–Katz joints theorem from lines to varieties. A special case says that N planes (2-flats) in 6 dimensions (over any field) have $$O(N^{3/2})$$ O ( N 3 / 2 ) joints, where a joint is a point contained in a triple of these planes not all lying in some hyperplane. More generally, we prove the same bound when the set of N planes is replaced by a set of 2-dimensional algebraic varieties of total degree N , and a joint is a point that is regular for three varieties whose tangent planes at that point are not all contained in some hyperplane. Our most general result gives upper bounds, tight up to constant factors, for joints with multiplicities for several sets of varieties of arbitrary dimensions (known as Carbery’s conjecture). Our main innovation is a new way to extend the polynomial method to higher dimensional objects, relating the degree of a polynomial and its orders of vanishing on a given set of points on a variety.more » « less
-
Abstract Let $$k$$ be a field, let $$H \subset G$$ be (possibly disconnected) reductive groups over $$k$$, and let $$\Gamma $$ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $$\underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , H)//H \to \underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , G)//G$$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $$k$$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings.more » « less
An official website of the United States government

