skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: QUANTIFYING LANDSCAPE CHANGE AT VERMONT’S LARGEST LANDSLIDE USING TIME-LAPSE SPATIAL DIFFERENCING OF 3D SURFACE MODELS FROM DRONE AND FIELD SURVEY DATA, WATERBURY, VERMONT
On May 31, 2019, a landslide near Waterbury in central Vermont removed >200,000 m3 of glacial lake deposits from a hillside in the Mt. Mansfield State Forest and transported the material across Cotton Brook, creating a dam near its toe. In the months following the slide, the brook breached the toe, removing ≥54, 000 m3 of sediment and transporting it ~1.3 km downstream into the Waterbury reservoir where it formed a large sedimentary delta. The delta grew 243% by Fall, 2020 until it began to erode into the reservoir in 2021. A collaborative team from the Vermont Geological Survey, the Vermont Agency of Transportation, Norwich University, and the University of Vermont team began a yearly monitoring of these events in 2019 using field-based mapping of bedrock and surficial geology, photogrammetry using annual drone surveys, and two LiDAR data sets. The first LiDAR data set was collected in 2014 prior to the slide by the Vermont Center for Geographic Information and the second after the slide in 2021 by the U.S. Army Corp of Engineers. Time-lapse spatial differencing allowed us to (1) quantify changes in surface topography over time, (2) calculate sediment budgets from source (landslide) to sink (delta), and (3) determine how mechanisms of mass wasting changed over time. Through this study we have also documented the following: (a) a second slip event in 2020 that removed ~25, 000 m3 of additional material from the hillside and contributed to growth of the Waterbury reservoir delta, (b) bedrock basins defined by the intersection of bedrock foliation and orthogonal fracture sets that appear to control slip location and geometry, (c) bedrock structures that influence the subsurface hydrology of the slip, which is expressed by oxidized groundwater seeps and a preferential deepening of rills into gullies on one side, and (d) how horizontal variations in the type and thickness of glacial lake sediments influenced mass-wasting mechanisms, including catastrophic failure of the hillside, the slumping of landslide sidewalls, the formation of crescent-shaped earth fractures, channeling around slumps, and the removal of material in deepening gullies. This study shows how a large landslide evolves from a major failure phase through later erosional and colluvial adjustments and supplies sediment at an episodic rate to the surface water system.  more » « less
Award ID(s):
2138734
PAR ID:
10494844
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Publisher / Repository:
Geological Society of America Abstracts with Programs
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Volume:
55
Issue:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Cotton Brook landslide, located in Mt. Mansfield State Forest near Waterbury, Vermont is the state’s largest documented landslide. The site’s stratigraphy is characterized by glaciolacustrine sediment overlying glacial till and bedrock. When the hillslope initially failed in 2019, it mobilized up to 200,000 m3 of surficial material downstream toward the Waterbury reservoir. This study spans from 2014 to 2023 and integrates field-based and UAS-derived data to 1) identify the mechanisms of continued mass wasting following the 2019 slip and 2) develop a workflow that allows us to estimate the magnitudes and rates of topographic change linked to diverse styles of earthflow. We utilized ArcGIS, Metashape Pro and CloudCompare softwares to conduct topographic differencing techniques with DEMs and 3-dimensional point clouds. We compared their outcomes to refine the workflow and quantify uncertainty. Vertical change measurements derived from DEMs over-estimated topographic change by up to ~10% when compared to values from 3-D point cloud results. We attribute this discrepancy to errors introduced by georeferencing and interpolation of elevation values. The latest volumetric estimates detail material redistributed from the hillside to the surrounding watershed. For instance, volumes extrapolated from ArcGIS and CloudCompare for material accumulated at the toe are approximately 135,000 m3 and 126,000 m3, respectively. Calculated uncertainties ranging from 1 cm – ~50 cm from CloudCompare were mapped spatially. To ground truth our geospatial analysis results, we mapped the main active earthflow processes driving sediment movement. The predominant mechanisms contributing to mass wasting include the collapse of thick piles of glacial lake sediment bordering the main slip and deepening gullies on the slip surface. Our quantitative analyses suggest the collapse of glacial material is accelerating, in part due to recent historic flooding. Gully features began as shallow rills and have evolved to reach depths of up to 1.5 m and are responsible for channelizing sediment into Cotton Brook. Our findings provide an opportunity to quantify material displaced and make predictions about how the sediment budget in the watershed and the Waterbury reservoir is impacted by the Cotton Brook landslide. 
    more » « less
  2. The Chaos Canyon landslide, which collapsed on the afternoon of 28 June 2022 in Rocky Mountain National Park, presents an opportunity to evaluate instabilities within alpine regions faced with a warming and dynamic climate. Video documentation of the landslide was captured by several eyewitnesses and motivated a rapid field campaign. Initial estimates put the failure area at 66 630 m2, with an average elevation of 3555 m above sea level. We undertook an investigation of previous movement of this landslide, measured the volume of material involved, evaluated the potential presence of interstitial ice and snow within the failed deposit, and examined potential climatological impacts on the collapse of the slope. Satellite radar and optical measurements were used to calculate deformation of the landslide in the 5 years leading up to collapse. From 2017 to 2019, the landslide moved ∼5 m yr−1, accelerating to 17 m yr−1 in 2019. Movement took place through both internal deformation and basal sliding. Climate analysis reveals that the collapse took place during peak snowmelt, and 2022 followed 10 years of higher than average positive degree day sums. We also made use of slope stability modeling to test what factors controlled the stability of the area. Models indicate that even a small increase in the water table reduces the factor of safety to <1, leading to failure. We posit that a combination of permafrost thaw from increasing average temperatures, progressive weakening of the basal shear zone from several years of movement, and an increase in pore-fluid pressure from snowmelt led to the 28 June collapse. Material volumes were estimated using structure from motion (SfM) models incorporating photographs from two field expeditions on 8 July 2022 – 10 d after the slide. Detailed mapping and SfM models indicate that ∼1 258 000 ± 150 000 m3 of material was deposited at the slide toe and ∼1 340 000 ± 133 000 m3 of material was evacuated from the source area. The Chaos Canyon landslide may be representative of future dynamic alpine topography, wherein slope failures become more common in a warming climate. 
    more » « less
  3. null (Ed.)
    Abstract. Landslides are the main source of sediment in most mountain ranges. Rivers then act as conveyor belts, evacuating landslide-derived sediment. Sediment dynamics are known to influence landscape evolution through interactions among landslide sediment delivery, fluvial transport and river incision into bedrock. Sediment delivery and its interaction with river incision therefore control the pace of landscape evolution and mediate relationships among tectonics, climate and erosion. Numerical landscape evolution models (LEMs) are well suited to study the interactions among these surface processes. They enable evaluation of a range of hypotheses at varying temporal and spatial scales. While many models have been used to study the dynamic interplay between tectonics, erosion and climate, the role of interactions between landslide-derived sediment and river incision has received much less attention. Here, we present HyLands, a hybrid landscape evolution model integrated within the TopoToolbox Landscape Evolution Model (TTLEM) framework. The hybrid nature of the model lies in its capacity to simulate both erosion and deposition at any place in the landscape due to fluvial bedrock incision, sediment transport, and rapid, stochastic mass wasting through landsliding. Fluvial sediment transport and bedrock incision are calculated using the recently developed Stream Power with Alluvium Conservation and Entrainment (SPACE) model. Therefore, rivers can dynamically transition from detachment-limited to transport-limited and from bedrock to bedrock–alluvial to fully alluviated states. Erosion and sediment production by landsliding are calculated using a Mohr–Coulomb stability analysis, while landslide-derived sediment is routed and deposited using a multiple-flow-direction, nonlinear deposition method. We describe and evaluate the HyLands 1.0 model using analytical solutions and observations. We first illustrate the functionality of HyLands to capture river dynamics ranging from detachment-limited to transport-limited conditions. Second, we apply the model to a portion of the Namche Barwa massif in eastern Tibet and compare simulated and observed landslide magnitude–frequency and area–volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating landsliding and sediment dynamics over longer timescales for landscape evolution in general and river dynamics in particular. With HyLands we provide a new tool to understand both the long- and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics. 
    more » « less
  4. Rapid sediment accumulation rates (SAR) in a fan delta situated on the rapidly uplifting footwall of the Taormina normal fault in NE Sicily preserves a rare record of earthquakes and base level change for a tightly coupled source to sink system. We use this sedimentary archive to reconstruct the kinematics and slip history of the fault and further an understanding of how tectonic forcing across various scales are encoded in stratigraphy. A revised luminescence-based age model indicates that ~82 m of the Pagliara fan-delta foreset facies was deposited in ~11 ka at a mean SAR of ~0.74 cm/yr during MIS 7. Syn-depositional terrestrial cosmogenic nuclide (TCN) determined paleoerosion rates of 0.91±0.12 mm/yr and 1.31 ±0.61 mm/yr are similar to published modern erosion rates for the Pagliara basin of 0.97 ±0.11 mm/yr. At the stratigraphic scale, a time series of magnetic susceptibility (c) sampled at 1 m intervals in the foresets displays four ~2,800 yr / 20 m-thick cycles of growing c, bounded by sharp decreases that do not coincide with changes in sediment texture. The c of the low-grade metamorphic bedrock in the source is 20-100 times weaker than the c of rubified soils mantling the hillslopes, which is comparable to the c of the delta sediments. We propose that large, bedrock-cored landslides quasi-periodically deliver weak c sediment to the delta that dilutes a c signal otherwise dominated by the stripping of soil-mantled hillslopes. We propose that centennial-scale recurrence interval earthquakes are most capable at triggering a basin-scale landslide only after channel incision has increased relief of hillslopes to the threshold condition, which requires millennia to achieve. At the landscape scale of delta geometry and location, the Pagliara delta accumulated in a hanging wall basin that has since been inverted. We reconstruct the history of base level fall for the delta from an inversion of fluvial topography and apportion that record to its rock uplift, delta deposition, and eustatic components. We show that footwall uplift has been unsteady over the past 600 ka ranging from -1 to 3 mm/yr. The integration of our stratigraphic- and landscape scale observations furthers our understanding of the natural hazards related to normal fault earthquakes and their impact on sediment dynamics in this steep, active tectonic setting. 
    more » « less
  5. Abstract Bedrock landslides shape topography and mobilize large volumes of sediment. Yet, interactions between landslide‐produced sediment and fluvial systems that together govern large‐scale landscape evolution are not well understood. To explain morphological patterns observed in steep, landslide‐prone terrain, we explicitly model stochastic landsliding and associated sediment dynamics. The model accounts for several common landscape features such as slope frequency distributions, which include values in excess of regional stability limits, quasi‐planar hillslopes decorated with straight, closely spaced channel‐like features, and accumulation of sediment in valley networks rather than on hillslopes. Stochastic landsliding strongly affects the magnitude and timing of sediment supply to the fluvial system. We show that intermittent sediment supply is ultimately reflected in topography. At dynamic equilibrium, landslide‐derived sediment pulses generate persistent landscape dynamism through the formation and breaching of landslide dams and epigenetic gorges as landslides force shifts in channel positions. Our work highlights the importance of interactions between landslides and sediment dynamics that ultimately control landscape‐scale response to environmental change. 
    more » « less