skip to main content


Title: Wind work at the air-sea interface: a modeling study in anticipation of future space missions

Abstract. Wind work at the air-sea interface is the transfer of kinetic energy between the ocean and the atmosphere and, as such, is an important part of the ocean-atmosphere coupled system. Wind work is defined as the scalar product of ocean wind stress and surface current, with each of these two variables spanning, in this study, a broad range of spatial and temporal scales, from 10 km to more than 3000 km and hours to months. These characteristics emphasize wind work's multiscale nature. In the absence of appropriate global observations, our study makes use of a new global, coupled ocean-atmosphere simulation, with horizontal grid spacing of 2–5 km for the ocean and 7 km for the atmosphere, analyzed for 12 months.We develop a methodology, both in physical and spectral spaces, to diagnose three different components of wind work that force distinct classes of ocean motions, including high-frequency internal gravity waves, such as near-inertial oscillations, low-frequency currents such as those associated with eddies, and seasonally averaged currents, such as zonal tropical and equatorial jets.The total wind work, integrated globally, has a magnitude close to 5 TW, a value that matches recent estimates. Each of the first two components that force high-frequency and low-frequency currents, accounts for ∼ 28 % of the total wind work and the third one that forces seasonally averaged currents, ∼ 44 %. These three components, when integrated globally, weakly vary with seasons but their spatial distribution over the oceans has strong seasonal and latitudinal variations. In addition, the high-frequency component that forces internal gravity waves, is highly sensitive to the collocation in space and time (at scales of a few hours) of wind stresses and ocean currents. Furthermore, the low-frequency wind work component acts to dampen currents with a size smaller than 250 km and strengthen currents with larger sizes. This emphasizes the need to perform a full kinetic budget involving the wind work and nonlinear advection terms as small and larger-scale low-frequency currents interact through these nonlinear terms.The complex interplay of surface wind stresses and currents revealed by the numerical simulation motivates the need for winds and currents satellite missions to directly observe wind work.

 
more » « less
Award ID(s):
1835618
NSF-PAR ID:
10494933
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
European Geophysical Union (EGU)
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
15
Issue:
21
ISSN:
1991-9603
Page Range / eLocation ID:
8041 to 8058
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Submesoscale currents and internal gravity waves achieve an intense turbulent cascade near the ocean surface [depth of 0–O(100) m], which is thought to give rise to significant energy sources and sinks for mesoscale eddies. Here, we characterize the contributions of nonwave currents (NWCs; including eddies and fronts) and internal gravity waves (IGWs; including near-inertial motions, lee waves, and the internal wave continuum) to near-surface submesoscale turbulence in the Drake Passage. Using a numerical simulation, we combine Lagrangian filtering and a Helmholtz decomposition to identify NWCs and IGWs and to characterize their dynamics (rotational versus divergent). We show that NWCs and IGWs contribute in different proportions to the inverse and forward turbulent kinetic energy cascades, based on their dynamics and spatiotemporal scales. Purely rotational NWCs cause most of the inverse cascade, while coupled rotational–divergent components of NWCs and coupled NWC–IGWs cause the forward cascade. The cascade changes direction at a spatial scale at which motions become increasingly divergent. However, the forward cascade is ultimately limited by the motions’ spatiotemporal scales. The bulk of the forward cascade (80%–95%) is caused by NWCs and IGWs of small spatiotemporal scales (L< 10 km;T< 6 h), which are primarily rotational: submesoscale eddies, fronts, and the internal wave continuum. These motions also cause a significant part of the inverse cascade (30%). Our results highlight the requirement for high spatiotemporal resolutions to diagnose the properties and large-scale impacts of near-surface submesoscale turbulence accurately, with significant implications for ocean energy cycle study strategies.

     
    more » « less
  2. Abstract

    This study examines the spatial and temporal variability of eddy kinetic energy over the Northeast Shelf using observations of surface currents from a unique array of six high frequency radar systems. Collected during summer and winter conditions over three consecutive years, the horizontal scales present were examined in the context of local wind and hydrographic variability, which were sampled concurrently from moorings and autonomous surface vehicles. While area‐averaged mean kinetic energy at the surface was tightly coupled to wind forcing, eddy kinetic energy was not, and was lower in magnitude in winter than summer in all areas. Kinetic energy wavenumber spectral slopes were generally near k−5/3, but varied seasonally, spatially, and between years. In contrast, wavenumber spectra of surface temperature and salinity along repeat transect lines had sharpk−3spectral slopes with little seasonal or inter‐annual variability. Radar‐based estimates of spectral kinetic energy fluxes revealed a mean transition scale of energy near 18 km during stratified months, but suggested much longer scales during winter. Overall, eddy kinetic energy was unrelated to local winds, but the up‐ or down‐scale flux of kinetic energy was tied to wind events and, more weakly, to local density gradients.

     
    more » « less
  3. Ocean mesoscale eddies are characterized by rotating-like and meandering currents that imprint the low-level atmosphere. Such a current feedback (CFB) has been shown to induce a sink of energy from the ocean to the atmosphere, and consequently to damp the eddy kinetic energy (EKE), with an apparent regional disparity. In a context of increasing model resolution, the importance of this feedback and its dependence on oceanic and atmospheric model resolution arise. Using a hierarchy of quasi-global coupled models with spatial resolutions varying from 1/4° to 1/12°, the present study shows that the CFB induces a negative wind work at scales ranging from 100 to 1000 km, and a subsequent damping of the mesoscale activity by ~30% on average, independently of the model resolution. Regional variations of this damping range from ~20% in very rich eddying regions to ~40% in poor eddying regions. This regional modulation is associated with a different balance between the sink of energy by eddy wind work and the source of EKE by ocean intrinsic instabilities. The efficiency of the CFB is also shown to be a function of the surface wind magnitude: the larger the wind, the larger the sink of energy. The CFB impact is thus related to both wind and EKE. Its correct representation requires both an ocean model that resolves the mesoscale field adequately and an atmospheric model resolution that matches the ocean effective resolution and allows a realistic representation of wind patterns. These results are crucial for including adequately mesoscale ocean–atmosphere interactions in coupled general circulation models and have strong implications in climate research.

     
    more » « less
  4. Abstract

    Enhanced diapycnal mixing induced by the near-bottom breaking of internal waves is an essential component of the lower meridional overturning circulation. Despite its crucial role in the ocean circulation, tidally driven internal wave breaking is challenging to observe due to its inherently short spatial and temporal scales. We present detailed moored and shipboard observations that resolve the spatiotemporal variability of the tidal response over a small-scale bump embedded in the continental slope of Tasmania. Cross-shore tidal currents drive a nonlinear trapped response over the steep bottom around the bump. The observations are roughly consistent with two-dimensional high-mode tidal lee-wave theory. However, the alongshore tidal velocities are large, suggesting that the alongshore bathymetric variability modulates the tidal response driven by the cross-shore tidal flow. The semidiurnal tide and energy dissipation rate are correlated at subtidal time scales, but with complex temporal variability. Energy dissipation from a simple scattering model shows that the elevated near-bottom turbulence can be sustained by the impinging mode-1 internal tide, where the dissipation over the bump isO(1%) of the incident depth-integrated energy flux. Despite this small fraction, tidal dissipation is enhanced over the bump due to steep topography at a horizontal scale ofO(1) km and may locally drive significant diapycnal mixing.

    Significance Statement

    Near-bottom turbulent mixing is a key element of the global abyssal circulation. We present observations of the spatiotemporal variability of tidally driven turbulent processes over a small-scale topographic bump off Tasmania. The semidiurnal tide generates large-amplitude transient lee waves and hydraulic jumps that are unstable and dissipate the tidal energy. These processes are consistent with the scattering of the incident low-mode internal tide on the continental slope of Tasmania. Despite elevated turbulence over the bump, near-bottom energy dissipation is small relative to the incident wave energy flux.

     
    more » « less
  5. Abstract

    Climate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.

     
    more » « less