skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple co‐occurring bioeconomic drivers of overexploitation can accelerate rare species extinction risk
Abstract The unsustainable harvest of species for the global wildlife trade is a major cause of vertebrate extinction. Through the anthropogenic Allee effect (AAE), overexploitation to extinction can occur when a species' rarity drives up its market price, enabling profitable harvest of all remaining individuals. Even in the absence of rarity value, however, the harvest of other species can subsidize the overexploitation of a rare species to the point of extinction, a phenomenon termed opportunistic exploitation. These two pathways to extinction have been considered independently, but many traded species experience them simultaneously.In this study, we develop a simple model that incorporates these mechanisms simultaneously and demonstrate that including multiple harvest strategies with market‐based feedbacks fundamentally alters rare species extinction risk and the rate at which overexploitation occurs. As a pertinent case study, we consider the harvest of ground pangolinsSmutsia temminckii.Our results show that pangolin extinction was generally associated with high rarity value, the use of multiple harvest strategies and the simultaneous harvest of a common species that has a fast life history. Pangolin population depletion and short‐term extinction risk were greatest when harvesters used a combination of pursuit and opportunistic (i.e. multi‐species) harvest strategies.Policy implications.Our results suggest that feedbacks between multiple financial incentives to overharvest can exacerbate the risk of extinction of rare species. As a result, continuing to address AAE and opportunistic exploitation as separate extinction pathways may insufficiently capture extinction risk for many exploited species. Criteria for assessing extinction risk or harvest sustainability of exploited species should incorporate multiple drivers of harvest pressure, with an expanded focus on including species with high rarity value that are exploited in multi‐species harvest regimes.  more » « less
Award ID(s):
2052616
PAR ID:
10494990
Author(s) / Creator(s):
; ;
Publisher / Repository:
John Wiley & Sons Ltd
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
60
Issue:
5
ISSN:
0021-8901
Page Range / eLocation ID:
754 to 763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Species differ dramatically in their prevalence in the natural world, with many species characterized as rare due to restricted geographic distribution, low local abundance and/or habitat specialization.We investigated the ecoevolutionary causes and consequences of rarity with phylogenetically controlled metaanalyses of population genetic diversity, fitness and functional traits in rare and common congeneric plant species. Our syntheses included 252 rare species and 267 common congeners reported in 153 peer‐reviewed articles published from 1978 to 2020 and one manuscript in press.Rare species have reduced population genetic diversity, depressed fitness and smaller reproductive structures than common congeners. Rare species also could suffer from inbreeding depression and reduced fertilization efficiency.By limiting their capacity to adapt and migrate, these characteristics could influence contemporary patterns of rarity and increase the susceptibility of rare species to rapid environmental change. We recommend that future studies present more nuanced data on the extent of rarity in focal species, expose rare and common species to ecologically relevant treatments, including reciprocal transplants, and conduct quantitative genetic and population genomic analyses across a greater array of systems. This research could elucidate the processes that contribute to rarity and generate robust predictions of extinction risks under global change. 
    more » « less
  2. Abstract A key challenge in conservation biology is that not all species are equally likely to go extinct when faced with a disturbance, but there are multiple overlapping reasons for such differences in extinction probability. Differences in species extinction risk may represent extinction selectivity, a non‐random process by which species’ risks of extinction are caused by differences in fitness based on traits. Additionally, rare species with low abundances and/or occupancies are more likely to go extinct than common species for reasons of random chance alone, that is, bad luck. Unless ecologists and conservation biologists can disentangle random and selective extinction processes, then the prediction and prevention of future extinctions will continue to be an elusive challenge.We suggest that a modified version of a common null model procedure, rarefaction, can be used to disentangle the influence of stochastic species loss from selective non‐random processes. To this end we applied a rarefaction‐based null model to three published data sets to characterize the influence of species rarity in driving biodiversity loss following three biodiversity loss events: (a) disease‐associated bat declines; (b) disease‐associated amphibian declines; and (c) habitat loss and invasive species‐associated gastropod declines. For each case study, we used rarefaction to generate null expectations of biodiversity loss and species‐specific extinction probabilities.In each of our case studies, we find evidence for both random and non‐random (selective) extinctions. Our findings highlight the importance of explicitly considering that some species extinctions are the result of stochastic processes. In other words, we find significant evidence for bad luck in the extinction process.Policy implications. Our results suggest that rarefaction can be used to disentangle random and non‐random extinctions and guide management decisions. For example, rarefaction can be used retrospectively to identify when declines of at‐risk species are likely to result from selectivity, versus random chance. Rarefaction can also be used prospectively to formulate minimum predictions of species loss in response to hypothetical disturbances. Given its minimal data requirements and familiarity among ecologists, rarefaction may be an efficient and versatile tool for identifying and protecting species that are most vulnerable to global extinction. 
    more » « less
  3. Abstract The management of sustainable harvest of animal populations is of great ecological and conservation importance. Development of formal quantitative tools to estimate and mitigate the impacts of harvest on animal populations has positively impacted conservation efforts.The vast majority of existing harvest models, however, do not simultaneously estimate ecological and harvest impacts on demographic parameters and population trends. Given that the impacts of ecological drivers are often equal to or greater than the effects of harvest, and can covary with harvest, this disconnect has the potential to lead to flawed inference.In this study, we used Bayesian hierarchical models and a 43‐year capture–mark–recovery dataset from 404,241 female mallardsAnas platyrhynchosreleased in the North American midcontinent to estimate mallard demographic parameters. Furthermore, we model the dynamics of waterfowl hunters and habitat, and the direct and indirect effects of anthropogenic and ecological processes on mallard demographic parameters.We demonstrate that density dependence, habitat conditions and harvest can simultaneously impact demographic parameters of female mallards, and discuss implications for existing and future harvest management models.Our results demonstrate the importance of controlling for multicollinearity among demographic drivers in harvest management models, and provide evidence for multiple mechanisms that lead to partial compensation of mallard harvest. We provide a novel model structure to assess these relationships that may allow for improved inference and prediction in future iterations of harvest management models across taxa. 
    more » « less
  4. Abstract Harvest of wild organisms is an important component of human culture, economy, and recreation, but can also put species at risk of extinction. Decisions that guide successful management actions therefore rely on the ability of researchers to link changes in demographic processes to the anthropogenic actions or environmental changes that underlie variation in demographic parameters.Ecologists often use population models or maximum sustained yield curves to estimate the impacts of harvest on wildlife and fish populations. Applications of these models usually focus exclusively on the impact of harvest and often fail to consider adequately other potential, often collinear, mechanistic drivers of the observed relationships between harvest and demographic rates. In this study, we used an integrated population model and long‐term data (1973–2016) to examine the relationships among hunting and natural mortality, the number of hunters, habitat conditions, and population size of blue‐winged tealSpatula discors, an abundant North American dabbling duck with a relatively fast‐paced life history strategy.Over the last two and a half decades of the study, teal abundance tripled, hunting mortality probability increased slightly (), and natural mortality probability increased substantially () at greater population densities. We demonstrate strong density‐dependent effects on natural mortality and fecundity as population density increased, indicative of compensatory harvest mortality and compensatory natality. Critically, an analysis that only assessed the relationship between survival and hunting mortality would spuriously indicate depensatory mortality due to multicollinearity between abundance, natural mortality and hunting mortality.Our findings demonstrate that models that only consider the direct effect of hunting on survival or natural mortality can fail to accurately assess the mechanistic impact of hunting on population dynamics due to multicollinearity among demographic drivers. This multicollinearity limits inference and may have strong impacts on applied management actions globally. 
    more » « less
  5. Abstract AimEcological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? LocationGlobal. Time period1990–2017. Major taxa studiedTrees. MethodsWe used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. ResultsCommunity dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large‐scale land degradation. Main conclusionsBy linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large‐scale management and conservation practices. 
    more » « less