A search is reported for pairs of light Higgs bosons (
We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gatelevel error with probability close to one. We model noise by adding a pair of weak, unital, singlequbit noise channels after each twoqubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution
 NSFPAR ID:
 10495096
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Communications in Mathematical Physics
 Volume:
 405
 Issue:
 3
 ISSN:
 00103616
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract ) produced in supersymmetric cascade decays in final states with small missing transverse momentum. A data set of LHC$${\textrm{H}} _1$$ ${\text{H}}_{1}$ collisions collected with the CMS detector at$$\hbox {pp}$$ $\text{pp}$ and corresponding to an integrated luminosity of 138$$\sqrt{s}=13\,\text {TeV} $$ $\sqrt{s}=13\phantom{\rule{0ex}{0ex}}\text{TeV}$ is used. The search targets events where both$$\,\text {fb}^{1}$$ $\phantom{\rule{0ex}{0ex}}{\text{fb}}^{1}$ bosons decay into Equation missing<#comment/>pairs that are reconstructed as largeradius jets using substructure techniques. No evidence is found for an excess of events beyond the background expectations of the standard model (SM). Results from the search are interpreted in the nexttominimal supersymmetric extension of the SM, where a “singlino” of small mass leads to squark and gluino cascade decays that can predominantly end in a highly Lorentzboosted singletlike$${\textrm{H}} _1$$ ${\text{H}}_{1}$ and a singlinolike neutralino of small transverse momentum. Upper limits are set on the product of the squark or gluino pair production cross section and the square of the Equation missing<#comment/>branching fraction of the$${\textrm{H}} _1$$ ${\text{H}}_{1}$ in a benchmark model containing almost massdegenerate gluinos and lightflavour squarks. Under the assumption of an SMlike Equation missing<#comment/>branching fraction,$${\textrm{H}} _1$$ ${\text{H}}_{1}$ bosons with masses in the range 40–120$${\textrm{H}} _1$$ ${\text{H}}_{1}$ arising from the decays of squarks or gluinos with a mass of 1200–2500$$\,\text {GeV}$$ $\phantom{\rule{0ex}{0ex}}\text{GeV}$ are excluded at 95% confidence level.$$\,\text {GeV}$$ $\phantom{\rule{0ex}{0ex}}\text{GeV}$ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuationdissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$V=23$$ $V=23$ m and 150$$\upmu$$ $\mu $ m, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$\upmu$$ $\mu $ and$$12^\circ$$ ${12}^{\circ}$ by tuning the Fermi energy between$$80^\circ$$ ${80}^{\circ}$ eV and$$E_F=1.0$$ ${E}_{F}=1.0$ eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequencydependent. Using finitedifference time domain calculations, coupled mode theory, and RPA, we develop the model of a midIR light source based on NPG, which will pave the way to graphenebased optical midIR communication, midIR color displays, midIR spectroscopy, and virus detection.$$E_F=0.25$$ ${E}_{F}=0.25$ 
Abstract The double differential cross sections of the Drell–Yan lepton pair (
, dielectron or dimuon) production are measured as functions of the invariant mass$$\ell ^+\ell ^$$ ${\ell}^{+}{\ell}^{}$ , transverse momentum$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ , and$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ . The$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ observable, derived from angular measurements of the leptons and highly correlated with$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ , is used to probe the low$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ region in a complementary way. Dilepton masses up to 1$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ of proton–proton collisions recorded with the CMS detector at the LHC at a centreofmass energy of 13$$\,\text {fb}^{1}$$ $\phantom{\rule{0ex}{0ex}}{\text{fb}}^{1}$ . Measurements are compared with predictions based on perturbative quantum chromodynamics, including softgluon resummation.$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ 
Abstract The azimuthal (
) correlation distributions between heavyflavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\Delta \varphi $$ $\Delta \phi $ TeV. Results are reported for electrons with transverse momentum$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ $\sqrt{{s}_{\mathrm{NN}}}=5.02$$$4 $4<{p}_{\text{T}}<16$ and pseudorapidity$$\textrm{GeV}/c$$ $\text{GeV}/c$ . The associated charged particles are selected with transverse momentum$$\eta <0.6$$ $\left\eta \right<0.6$$$1 $1<{p}_{\text{T}}<7$ , and relative pseudorapidity separation with the leading electron$$\textrm{GeV}/c$$ $\text{GeV}/c$ . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near and awayside peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \eta  < 1$$ $\left\Delta \eta \right<1$ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.$$\Delta \varphi $$ $\Delta \phi $ 
Abstract We prove that
depth local random quantum circuits with two qudit nearestneighbor gates on a$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$ $\phantom{\rule{0ex}{0ex}}\text{poly}\phantom{\rule{0ex}{0ex}}\left(t\right)\xb7{n}^{1/D}$D dimensional lattice withn qudits are approximatet designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$${{\,\textrm{poly}\,}}(t)\cdot n$$ $\phantom{\rule{0ex}{0ex}}\text{poly}\phantom{\rule{0ex}{0ex}}\left(t\right)\xb7n$ . We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($$D=1$$ $D=1$ ) is infinite and that certain counting problems are$${{\,\mathrm{\textsf{PH}}\,}}$$ $\phantom{\rule{0ex}{0ex}}\mathrm{PH}\phantom{\rule{0ex}{0ex}}$ hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constantdepth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anticoncentration”, meaning roughly that the output has nearmaximal entropy. Unitary 2designs have the desired anticoncentration property. Our result improves the required depth for this level of anticoncentration from linear depth to a sublinear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a twodimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$\#{\textsf{P}}$$ $\#P$ depth suffices for anticoncentration. The proof is based on a previous construction of$$O(\sqrt{n})$$ $O\left(\sqrt{n}\right)$t designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasiorthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anticoncentration and to establish equivalence between these various norms for lowdepth circuits. For random circuits with longrange gates, we use different methods to show that anticoncentration happens at circuit size corresponding to depth$$O(n\ln ^2 n)$$ $O\left(n{ln}^{2}n\right)$ . We also show a lower bound of$$O(\ln ^3 n)$$ $O\left({ln}^{3}n\right)$ for the size of such circuit in this case. We also prove that anticoncentration is possible in depth$$\Omega (n \ln n)$$ $\Omega (nlnn)$ (size$$O(\ln n \ln \ln n)$$ $O(lnnlnlnn)$ ) using a different model.$$O(n \ln n \ln \ln n)$$ $O(nlnnlnlnn)$