This content will become publicly available on February 28, 2025
The precise effect of oxide understoichiometry on bulk oxide catalytic properties continues to remain a subject of intense investigation. Of specific interest in this regard is the role of oxygen vacancies present on bulk ceria catalysts that have recently been reported to represent a more cost‐effective alternative to the more toxic and expensive catalysts used industrially for the selective hydrogenation of acetylene to ethylene. Contrasting claims as to the effect of surface reduction on hydrogenation rates exist in the open literature, with vacancy formation attributed, in separate studies, either a favorable or a deleterious role in effecting hydrogenation turnovers. We report here the non‐monotonic behavior of ethene hydrogenation rates that subsumes both of these trends as a function of degree of surface reduction over a sufficiently large range of pre‐reduction temperatures. Steady state transient kinetic and isotopic exchange data combined with in‐situ titration experiments suggest that this non‐monotonic trend can be attributed not to a change in either the kinetic relevance of specific elementary steps or the hydrogenation mechanism, but rather to site requirements that stipulate the need for two distinct, proximal sites. We also show that the sensitivity of hydrogenation rates to surface reduction can be altered by varying ceria surface termination, with the more open (110) and (100) surfaces exhibiting a less asymmetric effect of surface reduction on ethene hydrogenation rates.
more » « less- Award ID(s):
- 1916133
- PAR ID:
- 10495267
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemCatChem
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable candidates for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to an increased surface area and the presence of oxygen vacancies. Concomitantly, the treatments that induce oxygen vacancies also impact other material properties, such as the microstrain, crystallinity, oxidation state, and particle shape. Herein, multivariate statistical analysis is used to disentangle the impact of material properties of CuO nanoparticles on catalytic rates for nitroaromatic and methylene blue reduction. The impact of the microstrain, shape, and Cu(0) atomic percent is demonstrated for these reactions; furthermore, a protocol for correlating material property parameters to catalytic efficiency is presented, and the importance of catalyst design for these broadly utilized probe reactions is highlighted.more » « less
-
Ceria (CeO 2 ) has recently been found to catalyze the selective hydrogenation of alkynes, which has stimulated much discussion on the catalytic mechanism on various facets of reducible oxides. In this work, H 2 dissociation and acetylene hydrogenation on bare and Ni doped CeO 2 (110) surfaces are investigated using density functional theory (DFT). Similar to that on the CeO 2 (111) surface, our results suggest that catalysis is facilitated by frustrated Lewis pairs (FLPs) formed by oxygen vacancies (O v s) on the oxide surfaces. On bare CeO 2 (110) with a single O v (CeO 2 (110)–O v ), two surface Ce cations with one non-adjacent O anion are shown to form (Ce 3+ –Ce 4+ )/O quasi-FLPs, while for the Ni doped CeO 2 (110) surface with one (Ni–CeO 2 (110)–O v ) or two (Ni–CeO 2 (110)–2O v ) O v s, one Ce and a non-adjacent O counterions are found to form a mono-Ce/O FLP. DFT calculations indicate that Ce/O FLPs facilitate the H 2 dissociation via a heterolytic mechanism, while the resulting surface O–H and Ce–H species catalyze the subsequent acetylene hydrogenation. With CeO 2 (110)–O v and Ni–CeO 2 (110)–2O v , our DFT calculations suggest that the first hydrogenation step is the rate-determining step with a barrier of 0.43 and 0.40 eV, respectively. For Ni–CeO 2 (110)–O v , the reaction is shown to be controlled by the H 2 dissociation with a barrier of 0.41 eV. These barriers are significantly lower than that (about 0.7 eV) on CeO 2 (111), explaining the experimentally observed higher catalytic efficiency of the (110) facet of ceria. The change of the rate-determining step is attributed to the different electronic properties of Ce in the Ce/O FLPs – the Ce f states closer to the Fermi level not only facilitate the heterolytic dissociation of H 2 but also lead to a higher barrier of acetylene hydrogenation.more » « less
-
Abstract Dilute alloy CuPt and NiPt catalysts are studied in the hydrogenation of citral, a model α,β‐unsaturated aldehyde.
In situ andex situ characterization is used to demonstrate that the Pt species within these nanoparticles are well dispersed and approach a single atom alloy structure. The distribution of Pt varies between the two host metal systems; under a hydrogen environment, the nanoparticle surface and near‐surface region of the NiPt nanoparticles is Pt rich, while the Pt is more uniformly distributed throughout the CuPt nanoparticles. When used for citral hydrogenation reactions, a rate enhancement is observed upon the addition of Pt to the Cu or Ni host catalysts, however this enhancement is determined to be due to the presence of additional metal and not a synergistic effect of the two metals. The Pt structure does, nonetheless, influence the observed selectivity trends. NiPt/SiO2catalysts have high selectivity to the unsaturated aldehyde citronellal while the CuPt/SiO2catalysts have increased selectivity to unsaturated alcohol products. This increased selectivity is attributed to a combination of hydrogen dissociation over Pt sites and a decrease in size of Cu ensembles due to the presence of Pt, which favors binding and hydrogenation of C=O rather than C=C bonds. -
Abstract Oxide supports with well‐defined shapes enable investigations on the effects of surface structure on metal–support interactions and correlations to catalytic activity and selectivity. Here, a modified atomic layer deposition technique was developed to achieve ultra‐low loadings (8–16 ppm) of Pt on shaped ceria nanocrystals. Using octahedra and cubes, which expose exclusively (111) and (100) surfaces, respectively, the effect of CeO2surface facet on Pt‐CeO2interactions under reducing conditions was revealed. Strong electronic interactions result in electron‐deficient Pt species on CeO2(111) after reduction, which increased the stability of the atomically dispersed Pt. This afforded significantly higher NMR signal enhancement in parahydrogen‐induced polarization experiments compared with the electron‐rich platinum on CeO2(100), and a factor of two higher pairwise selectivity (6.1 %) in the hydrogenation of propene than any previously reported monometallic heterogeneous Pt catalyst.
-
Abstract Oxide supports with well‐defined shapes enable investigations on the effects of surface structure on metal–support interactions and correlations to catalytic activity and selectivity. Here, a modified atomic layer deposition technique was developed to achieve ultra‐low loadings (8–16 ppm) of Pt on shaped ceria nanocrystals. Using octahedra and cubes, which expose exclusively (111) and (100) surfaces, respectively, the effect of CeO2surface facet on Pt‐CeO2interactions under reducing conditions was revealed. Strong electronic interactions result in electron‐deficient Pt species on CeO2(111) after reduction, which increased the stability of the atomically dispersed Pt. This afforded significantly higher NMR signal enhancement in parahydrogen‐induced polarization experiments compared with the electron‐rich platinum on CeO2(100), and a factor of two higher pairwise selectivity (6.1 %) in the hydrogenation of propene than any previously reported monometallic heterogeneous Pt catalyst.