skip to main content

Title: JWST-MIRI Spectroscopy of Warm Molecular Emission and Variability in the AS 209 Disk

We present MIRI Medium-resolution Spectrograph observations of the large, multi-gapped protoplanetary disk around the T Tauri star AS 209. The observations reveal hundreds of water vapor lines from 4.9–25.5μm toward the inner ∼1 au in the disk, including the first detection of rovibrational water emission in this disk. The spectrum is dominated by hot (∼800 K) water vapor and OH gas, with only marginal detections of CO2, HCN, and a possible colder water vapor component. Using slab models with a detailed treatment of opacities and line overlap, we retrieve the column density, emitting area, and excitation temperature of water vapor and OH, and provide upper limits for the observable mass of other molecules. Compared to MIRI spectra of other T Tauri disks, the inner disk of AS 209 does not appear to be atypically depleted in CO2nor HCN. Based on Spitzer Infrared Spectrograph observations, we further find evidence for molecular emission variability over a 10 yr baseline. Water, OH, and CO2line luminosities have decreased by factors of 2–4 in the new MIRI epoch, yet there are minimal continuum emission variations. The origin of this variability is yet to be understood.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 36
["Article No. 36"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The chemical composition of the inner region of protoplanetary disks can trace the composition of planetary-building material. The exact elemental composition of the inner disk has not yet been measured and tensions between models and observations still exist. Recent advancements have shown UV shielding to be able to increase the emission of organics. Here, we expand on these models and investigate how UV shielding may impact chemical composition in the inner 5 au. In this work, we use the model from Bosman et al. and expand it with a larger chemical network. We focus on the chemical abundances in the upper disk atmosphere where the effects of water UV shielding are most prominent and molecular lines originate. We find rich carbon and nitrogen chemistry with enhanced abundances of C2H2, CH4, HCN, CH3CN, and NH3by >3 orders of magnitude. This is caused by the self-shielding of H2O, which locks oxygen in water. This subsequently results in a suppression of oxygen-containing species like CO and CO2. The increase in C2H2seen in the model with the inclusion of water UV shielding allows us to explain the observed C2H2abundance without resorting to elevated C/O ratios as water UV shielding induced an effectively oxygen-poor environment in oxygen-rich gas. Thus, water UV shielding is important for reproducing the observed abundances of hydrocarbons and nitriles. From our model result, species like CH4, NH3, and NO are expected to be observable with the James Webb Space Telescope (JWST).

    more » « less
  2. Abstract

    We report production rates of H2O and nine trace molecules (C2H6, CH4, H2CO, CH3OH, HCN, NH3, C2H2, OCS, and CO) in long-period comet C/2020 S3 (Erasmus) using the high-resolution, cross-dispersed infrared spectrograph (iSHELL) at the NASA Infrared Telescope Facility, on two pre-perihelion dates at heliocentric distancesRh= 0.49 and 0.52 au. Our molecular abundances with respect to simultaneously or contemporaneously measured H2O indicate that S3 is depleted in CH3OH compared to its mean abundance relative to H2O among the overall comet population (Oort Cloud comets and Jupiter-family comets combined), whereas the eight other measured species have near-average abundances relative to H2O. In addition, compared to comets observed atRh< 0.80 au at near-infrared wavelengths, S3 showed enhancement in the abundances of volatile species H2CO, NH3, and C2H2, indicating possible additional (distributed) sources in the coma for these volatile species. The spatial profiles of volatile species in S3 in different instrumental settings are dramatically different, which might suggest temporal variability in comet outgassing behavior between the nonsimultaneous measurements. The spatial distributions of simultaneously measured volatile species C2H6and CH4are nearly symmetric and closely track each other, while those of CO and HCN co-measured with H2O (using different instrument settings) are similar to each other and are asymmetric in the antisunward direction.

    more » « less
  3. We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines. 
    more » « less
  4. The complex physical, kinematic, and chemical properties of galaxy centres make them interesting environments to examine with molecular line emission. We present new 2 − 4″ (∼75 − 150 pc at 7.7 Mpc) observations at 2 and 3 mm covering the central 50″ (∼1.9 kpc) of the nearby double-barred spiral galaxy NGC 6946 obtained with the IRAM Plateau de Bure Interferometer. We detect spectral lines from ten molecules: CO, HCN, HCO + , HNC, CS, HC 3 N, N 2 H + , C 2 H, CH 3 OH, and H 2 CO. We complemented these with published 1 mm CO observations and 33 GHz continuum observations to explore the star formation rate surface density Σ SFR on 150 pc scales. In this paper, we analyse regions associated with the inner bar of NGC 6946 – the nuclear region (NUC), the northern (NBE), and southern inner bar end (SBE) and we focus on short-spacing corrected bulk (CO) and dense gas tracers (HCN, HCO + , and HNC). We find that HCO + correlates best with Σ SFR , but the dense gas fraction ( f dense ) and star formation efficiency of the dense gas (SFE dense ) fits show different behaviours than expected from large-scale disc observations. The SBE has a higher Σ SFR , f dense , and shocked gas fraction than the NBE. We examine line ratio diagnostics and find a higher CO(2−1)/CO(1−0) ratio towards NBE than for the NUC. Moreover, comparison with existing extragalactic datasets suggests that using the HCN/HNC ratio to probe kinetic temperatures is not suitable on kiloparsec and sub-kiloparsec scales in extragalactic regions. Lastly, our study shows that the HCO + /HCN ratio might not be a unique indicator to diagnose AGN activity in galaxies. 
    more » « less
  5. Abstract

    We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M. IRS1 has a central mass of 3–5Mbased on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.

    more » « less