skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating altimetry-derived surface currents on the south Greenland shelf with surface drifters
Abstract. The pathways and fate of freshwater in the East Greenland Coastal Current (EGCC) are crucial to the climate system. The EGCC transports large amounts of freshwater in close proximity to sites of deep open-ocean convection in the Labrador and Irminger seas. Many studies have attempted to analyze this system from models and various observational platforms, but the modeling results largely disagree with one another, and observations are limited due to the harsh conditions typical of the region. Altimetry-derived surface currents, constructed from remote-sensing observations and applying geostrophic equations, provide a continuous observational data set beginning in 1993. However, these products have historically encountered difficulties in coastal regions, and thus their validity must be checked. In this work, we use a comprehensive methodology to compare these Eulerian data to a Lagrangian data set of 34 surface drifter trajectories and demonstrate that the altimetry-derived surface currents are surprisingly capable of recovering the spatial structure of the flow field on the south Greenland shelf and can mimic the Lagrangian nature of the flow as observed from surface drifters.  more » « less
Award ID(s):
2047952
PAR ID:
10495340
Author(s) / Creator(s):
;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Ocean Science
Volume:
19
Issue:
5
ISSN:
1812-0792
Page Range / eLocation ID:
1393 to 1411
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The coastal circulation around Southern Greenland transports fresh, buoyant water masses from the Arctic and Greenland Ice Sheet near regions of convection, sinking, and deep-water formation in the Irminger and Labrador Seas. Here, we track the pathways and fate of these fresh water masses by initializing synthetic particles in the East Greenland Coastal Current on the Southeast Greenland shelf and running them through altimetry-derived surface currents from 1993 to 2021. We report that the majority of waters (83%) remain on the shelf around the southern tip of Greenland. Variability in the shelf-basin exchange of the remaining particles closely follows the number of tip jet wind events on seasonal and interannual timescales. The probability of a particle exiting the shelf increases almost fivefold during a tip jet event. These results indicate that the number of tip jets is a close proxy of the shelf-basin exchange around Southern Greenland. 
    more » « less
  2. The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea. 
    more » « less
  3. null (Ed.)
    Abstract Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep. 
    more » « less
  4. Coastal waters off west Greenland are strongly influenced by the input of low salinity water from the Arctic and from meltwater from the Greenland Ice Sheet. Changes in freshwater content in the region can play an important role in stratification, circulation, and primary production; however, investigating salinity variability in the region is challenging because in situ observations are sparse. Here, we used satellite observations of sea surface salinity (SSS) from the Soil Moisture and Ocean Salinity mission produced by LOCEAN and by the Barcelona Expert Center (SMOS LOCEAN and SMOS BEC) and from the Soil Moisture Active Passive mission produced by the Jet Propulsion Laboratory (SMAP JPL) as well as by Remote Sensing Systems (SMAP RSS) to investigate how variability in a narrow coastal band off west Greenland is captured by these different products. Our analyses revealed that the various satellite SSS products capture the seasonal freshening off west Greenland from late spring to early fall. The magnitudes of the freshening and of coastal salinity gradients vary between the products however, being attenuated compared to historical in situ observations in most cases. The seasonal freshening off southwest Greenland is intensified in SMAP JPL and SMOS LOCEAN near the mouth of fjords characterized by large inputs of meltwater near the surface, which suggests an influence of meltwater from the Greenland Ice Sheet. Synoptic observations from 2012 following large ice sheet melting revealed good agreement with the spatial scale of freshening observed with in situ and SMOS LOCEAN data. Our analyses indicate that satellite SSS can capture the influence of meltwater input and associated freshwater plumes off coastal west Greenland, but those representations differ between products. 
    more » « less
  5. Abstract Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f> 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region. 
    more » « less