Coastal waters in the Labrador Sea are influenced by the seasonal input of meltwater from the Greenland ice sheet, which is predicted to more than double by the end of the century. Mechanisms controlling the offshore export of meltwater can have a significant effect on stratification and vertical stability in the Labrador Sea, being particularly important if the meltwater is transported toward the interior of the basin where winter convection occurs. Here we use a high‐resolution ocean model to show that coastal upwelling winds play a critical role transporting the meltwater offshore to about 150 km from the coast, where increased eddy activity and mean circulation can then transport the meltwater farther offshore. While meltwater discharged from West Greenland is either transported to Baffin Bay or circumnavigates the basin flowing mostly along isobaths, meltwater from East Greenland can reach the interior of the basin where it may influence stratification and winter convection whenever winds are anomalously upwelling favorable in late summer and early fall.
The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea.
more » « less- Award ID(s):
- 2219874
- PAR ID:
- 10543211
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 15
- Issue:
- 23
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 5545
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The Greenland ice sheet is melting at increasing rates. Changes in freshwater input to the Labrador Sea can influence coastal circulation and biological processes, stratification, and potentially winter convection. Many recent studies have investigated freshwater variability in the region based on model simulations or observations with limited spatial/temporal coverage. Here, we use in situ (1990–2019) and satellite (2011–2017) observations of surface salinity to characterize freshwater content and to identify transport pathways in the Labrador Sea over multiple years. Large freshening is observed in coastal waters off southwest Greenland from July to November. Interannual variability in freshening near the coast seems to be at least partially related to variability in meltwater input, although the sparseness of in situ data precludes a quantitative assessment. The seasonal westward transport of freshwater is enhanced between 60°–62°N and especially between 63°–64.8°N from August to October, with the low‐salinity waters circumnavigating the basin following the 1,000–2,000 m isobaths. That pathway coincides with intensifications in the component of the surface geostrophic flow that is directed offshore, highlighting the role played by the large‐scale circulation on the westward transport of the freshwater. Low‐salinity water can be transported toward the central Labrador Sea at synoptic scales, however, where it can potentially influence stratification. Consistent with previous modeling studies, offshore freshening is reduced in years with persistent downwelling‐favorable wind conditions. Despite limitations under cold water conditions, satellite observations of surface salinity compare well with in situ data suggesting that they can be useful for monitoring freshwater content in high latitudes.
-
null (Ed.)Abstract The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 10 6 m 3 s −1 ), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.more » « less
-
Baffin Bay exports Arctic Water to the North Atlantic while receiving northward flowing Atlantic Water. Warm Atlantic Water has impacted the retreat of tidewater glaciers draining the Greenland Ice Sheet. Periods of enhanced Atlantic Water transport into Baffin Bay have been observed, but the oceanic processes are still not fully explained. At the end of 2010 the net transport at Davis Strait, the southern gateway to Baffin Bay, reversed from southward to northward for a month, leading to significant northward oceanic heat transport into Baffin Bay. This was associated with an extreme high in the Greenland Blocking Index and a stormtrack path that shifted away from Baffin Bay. Thus fewer cyclones in the Irminger Sea resulted in less frequent northerly winds along the western coast of Greenland, allowing anomalous northward penetration of warm waters, reversing the volume and heat transport at Davis Strait.more » « less
-
Abstract West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.