skip to main content


Title: Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st Centuries
Abstract

A land process model, Integrated Science Assessment Model, is extended to simulate contemporary soybean and maize crop yields accurately and changes in yields over the period 1901–2100 driven by environmental factors (atmospheric CO2level ([CO2]) and climate), and management factors (nitrogen input and irrigation). Over the twentieth century, each factor contributes to global yield increase; increasing nitrogen fertilization rates is the strongest driver for maize, and increasing [CO2] is the strongest for soybean. Over the 21st century, crop yields are projected under two future scenarios, RCP4.5‐SSP2 and RCP8.5‐SSP5; the warmer temperature drives yields lower, while rising [CO2] drives yields higher. The adverse warmer temperature effect of maize and soybean is offset by other drivers, particularly the increase in [CO2], and resultant changes in the phenological events due to climate change, particularly planting dates and harvesting times, by 2090s under both scenarios. Global yield for maize increases under RCP4.5‐SSP2, which experiences continued growth in [CO2] and higher nitrogen input rates. For soybean, yield increases at a similar rate. However, in RCP8.5‐SSP5, maize yield declines because of greater climate warming, extreme heat stress conditions, and weaker nitrogen fertilization than RCP4.5‐SSP2, particularly in tropical and subtropical regions, suggesting that application of advanced technologies, and stronger management practices, in addition to climate change mitigation, may be needed to intensify crop production over this century. The model also projects spatial variations in yields; notably, the higher temperatures in tropical and subtropical regions limit photosynthesis rates and reduce light interception, resulting in lower yields, particularly for soybean under RCP8.5‐SSP5.

 
more » « less
NSF-PAR ID:
10361608
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
11
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heat and drought are two emerging climatic threats to theUSmaize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmosphericCO2concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and futureUSrainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high‐resolution (12 km) dynamically downscaled climate projections for 1995–2004 and 2085–2094. Results show that maize and soybean yield losses are prominent in theUSMidwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 andRCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmosphericCO2partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat toUSrainfed maize production underRCP4.5 and soybean production under bothRCPscenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize underRCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for theUSMidwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.

     
    more » « less
  2. As the climate changes, a growing demand exists to identify and manage spatial variation in crop yield to ensure global food security. This study assesses spatial soil variability and its impact on maize yield under a future climate in eastern Kansas’ top ten maize-producing counties. A cropping system model, CERES-Maize of Decision Support System for Agrotechnology Transfer (DSSAT) was calibrated using observed maize yield. To account for the spatial variability of soils, the gSSURGO soil database was used. The model was run for a baseline and future climate change scenarios under two Representative Concentration Pathways (RCP4.5 and RCP8.5) to assess the impact of future climate change on rainfed maize yield. The simulation results showed that maize yield was impacted by spatial soil variability, and that using spatially distributed soils produces a better simulation of yield as compared to using the most dominant soil in a county. The projected increased temperature and lower precipitation patterns during the maize growing season resulted in a higher yield loss. Climate change scenarios projected 28% and 45% higher yield loss under RCP4.5 and RCP8.5 at the end of the century, respectively. The results indicate the uncertainties of growing maize in our study region under the changing climate, emphasizing the need for developing strategies to sustain maize production in the region.

     
    more » « less
  3. Abstract

    Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2might be overestimated in crop models, because elevated CO2brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.

     
    more » « less
  4. Nitrogen (N) fertilizer use is rapidly intensifying on tropical croplands and has the potential to increase emissions of the greenhouse gas, nitrous oxide (N2O). Since about 2005 Mato Grosso (MT), Brazil has shifted from single-cropped soybeans to double-cropping soybeans with maize, and now produces 1.5% of the world's maize. This production shift required an increase in N fertilization, but the effects on N2O emissions are poorly known. We calibrated the process-oriented biogeochemical DeNitrification-DeComposition (DNDC) model to simulate N2O emissions and crop production from soybean and soybean-maize cropping systems in MT. After model validation with field measurements and adjustments for hydrological properties of tropical soils, regional simulations suggested N2O emissions from soybean-maize cropland increased almost fourfold during 2001–2010, from 1.1 ± 1.1 to 4.1 ± 3.2 Gg 1014 N-N2O. Model sensitivity tests showed that emissions were spatially and seasonably variable and especially sensitive to soil bulk density and carbon content. Meeting future demand for maize using current soybean area in MT might require either (a) intensifying 3.0 million ha of existing single soybean to soybean-maize or (b) increasing N fertilization to ~180 kg N ha−1on existing 2.3 million ha of soybean-maize area. The latter strategy would release ~35% more N2O than the first. Our modifications of the DNDC model will improve estimates of N2O emissions from agricultural production in MT and other tropical areas, but narrowing model uncertainty will depend on more detailed field measurements and spatial data on soil and cropping management.

     
    more » « less
  5. Abstract

    Warming due to climate change has profound impacts on regional crop yields, and this includes impacts from rising mean growing season temperature and heat stress events. Adapting to these two impacts could be substantially different, and the overall contribution of these two factors on the effects of climate warming and crop yield is not known. This study used the improved WheatGrow model, which can reproduce the effects of temperature change and heat stress, along with detailed information from 19 location-specific cultivars and local agronomic management practices at 129 research stations across the main wheat-producing region of China, to quantify the regional impacts of temperature increase and heat stress separately on wheat in China. Historical climate, plus two future low-warming scenarios (1.5 °C/2.0 °C warming above pre-industrial) and one future high-warming scenario (RCP8.5), were applied using the crop model, without considering elevated CO2effects. The results showed that heat stress and its yield impact were more severe in the cooler northern sub-regions than the warmer southern sub-regions with historical and future warming scenarios. Heat stress was estimated to reduce wheat yield in most of northern sub-regions by 2.0%–4.0% (up to 29% in extreme years) under the historical climate. Climate warming is projected to increase heat stress events in frequency and extent, especially in northern sub-regions. Surprisingly, higher warming did not result in more yield-impacting heat stress compared to low-warming, due to advanced phenology with mean warming and finally avoiding heat stress events during grain filling in summer. Most negative impacts of climate warming are attributed to increasing mean growing-season temperature, while changes in heat stress are projected to reduce wheat yields by an additional 1.0%–1.5% in northern sub-regions. Adapting to climate change in China must consider the different regional and temperature impacts to be effective.

     
    more » « less