Abstract Cationic bottlebrush homopolymers are polymerized using a grafting‐through approach by ring‐opening metathesis polymerization (ROMP) to afford well‐defined polymers. Quaternary ammonium macromonomers (MMs) are prepared by quaternizing tertiary amine MMs synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The quaternary ammonium MMs undergo ROMP to target molecular weights (Mn= 30 000–100 000 g mol−1) and a low dispersity (Đ= 1.10–1.30). Halide‐ligand exchange between the third generation Grubbs catalyst (G3) and halide counter ions (bromide and iodide ions) of MMs changes the catalyst activity throughout ROMP, causing it to deviate from pseudo‐first order kinetic behavior; however, the polymerization still follows controlled behavior without significant catalyst termination. Increasing steric bulk of the MMs decreases the polymerization rate as well. Amphiphilic block copolymers are synthesized by sequential polymerization of quaternary ammonium MMs and polystyrene (PS) MMs. Using a PS macroinitiator affords block copolymers with lowerĐvalues as compared to the less active cationic macroinitiator.
more »
« less
Chimeric Amphiphilic Disinfectants: Quaternary Ammonium/Quaternary Phosphonium Hybrid Structures
Abstract Cationic biocides play a crucial role in the disinfection of domestic and healthcare surfaces. Due to the rise of bacterial resistance towards common cationic disinfectants like quaternary ammonium compounds (QACs), the development of novel actives is necessary for effective infection prevention and control. Toward this end, a series of 15 chimeric biscationic amphiphilic compounds, bearing both ammonium and phosphonium residues, were prepared to probe the structure and efficacy of mixed cationic ammonium‐phosphonium structures. Compounds were obtained in two steps and good yields, with straightforward and chromatography‐free purifications. Antibacterial activity evaluation of these compounds against a panel of seven bacterial strains, including two MRSA strains as well as opportunistic pathogenA. baumannii, were encouraging, as low micromolar inhibitory activity was observed for multiple structures. Alkyl chain length on the ammonium group was, as expected, a major determinant of bioactivity. In addition, high therapeutic indexes (up to 125‐fold) for triphenyl phosphonium‐bearing amphiphiles were observed when comparing antimicrobial activity to mammalian cell lysis activity.
more »
« less
- Award ID(s):
- 2215854
- PAR ID:
- 10495413
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemMedChem
- Volume:
- 19
- Issue:
- 11
- ISSN:
- 1860-7179
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene‐containing mono‐ and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram‐negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single‐digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.more » « less
-
Abstract Previously, a boronium salt possessing a terminal benzyl group was reported to have greater antibacterial activity than a commercial quaternary ammonium disinfectant solution againstEscherichia coli,Pseudomonas aeruginosa, andStaphylococcus aureus. Results of the current study indicate that the same boronium salt without a benzyl group, exhibited equal or better antifungal activity against actively growingCandida albicansyeast andAspergillus fumigatusmold when compared to the same quat disinfectant. This same compound also displayed antifungal activity against dormantA. fumigatusspores comparable to the quat disinfectant. In contrast, the boronium ion with a benzyl group was 4–16X less effective than either the non‐benzylated form or quat disinfectant for all 3 fungal test conditions. The observation that the boronium salt without a benzyl group exhibited substantial antifungal activity in the current study but did not display any antibacterial activity in the previous study is of particular interest. This finding represents a flip‐flop outcome from the previous bacterial testing. It suggests that the presence of a terminal benzyl group greatly influences the boronium ion's ability to interact with fungal membranes.more » « less
-
Proteins from the bacterial small multidrug resistance (SMR) family are proton-coupled exporters of diverse antiseptics and antimicrobials, including polyaromatic cations and quaternary ammonium compounds. The transport mechanism of the Escherichia coli transporter, EmrE, has been studied extensively, but a lack of high-resolution structural information has impeded a structural description of its molecular mechanism. Here, we apply a novel approach, multipurpose crystallization chaperones, to solve several structures of EmrE, including a 2.9 Å structure at low pH without substrate. We report five additional structures in complex with structurally diverse transported substrates, including quaternary phosphonium, quaternary ammonium, and planar polyaromatic compounds. These structures show that binding site tryptophan and glutamate residues adopt different rotamers to conform to disparate structures without requiring major rearrangements of the backbone structure. Structural and functional comparison to Gdx-Clo, an SMR protein that transports a much narrower spectrum of substrates, suggests that in EmrE, a relatively sparse hydrogen bond network among binding site residues permits increased sidechain flexibility.more » « less
-
Melissa Grunlan (Ed.)The performance of antimicrobial polymers depends sensitively on the type of cationic species, charge density, and spatial arrangement of cations. Here we report antimicrobial polymers bearing unusually bulky tetraaminophosphonium groups as the source of highly delocalized cationic charge. The bulky cations drastically enhanced the biocidal activity of amphiphilic polymers, leading to remarkably potent activity in the submicromolar range. The cationic polynorbornenes with pendent tetraaminophosphonium groups killed over 98% E. coli at a concentration of 0.1 μg/mL and caused a 4-log reduction of E. coli within 2 h at a concentration of 2 μg/mL, showing very rapid and potent bactericidal activity. The polymers are also highly hemolytic at similar concentrations, indicating a biocidal activity profile. Polymers of a similar chemical structure but with more flexible backbones were made to examine the effects of the flexibility of polymer chains on their activity, which turned out to be marginal. We also explore variants with different spacer arm groups separating the cations from the backbone main chain. The antibacterial activity was comparably potent in all cases, but the polymers with shorter spacer arm groups showed more rapid bactericidal kinetics. Interestingly, pronounced counterion effects were observed. Tightly bound PF6– counteranions showed poor activity at high concentrations due to gross aggregate formation and precipitation from the assay media, whereas loosely bound Cl– counterions resulted in very potent activity that monotonically increased with increasing concentration. In this paper, we reveal that bulky phosphonium cations are associated with markedly enhanced biocidal activity, which provides an innovative strategy to develop more effective self-disinfecting materials.more » « less
An official website of the United States government
