skip to main content

This content will become publicly available on February 28, 2025

Title: Chimeric Amphiphilic Disinfectants: Quaternary Ammonium/Quaternary Phosphonium Hybrid Structures

Cationic biocides play a crucial role in the disinfection of domestic and healthcare surfaces. Due to the rise of bacterial resistance towards common cationic disinfectants like quaternary ammonium compounds (QACs), the development of novel actives is necessary for effective infection prevention and control. Toward this end, a series of 15 chimeric biscationic amphiphilic compounds, bearing both ammonium and phosphonium residues, were prepared to probe the structure and efficacy of mixed cationic ammonium‐phosphonium structures. Compounds were obtained in two steps and good yields, with straightforward and chromatography‐free purifications. Antibacterial activity evaluation of these compounds against a panel of seven bacterial strains, including two MRSA strains as well as opportunistic pathogenA. baumannii, were encouraging, as low micromolar inhibitory activity was observed for multiple structures. Alkyl chain length on the ammonium group was, as expected, a major determinant of bioactivity. In addition, high therapeutic indexes (up to 125‐fold) for triphenyl phosphonium‐bearing amphiphiles were observed when comparing antimicrobial activity to mammalian cell lysis activity.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cationic bottlebrush homopolymers are polymerized using a grafting‐through approach by ring‐opening metathesis polymerization (ROMP) to afford well‐defined polymers. Quaternary ammonium macromonomers (MMs) are prepared by quaternizing tertiary amine MMs synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The quaternary ammonium MMs undergo ROMP to target molecular weights (Mn= 30 000–100 000 g mol−1) and a low dispersity (Đ= 1.10–1.30). Halide‐ligand exchange between the third generation Grubbs catalyst (G3) and halide counter ions (bromide and iodide ions) of MMs changes the catalyst activity throughout ROMP, causing it to deviate from pseudo‐first order kinetic behavior; however, the polymerization still follows controlled behavior without significant catalyst termination. Increasing steric bulk of the MMs decreases the polymerization rate as well. Amphiphilic block copolymers are synthesized by sequential polymerization of quaternary ammonium MMs and polystyrene (PS) MMs. Using a PS macroinitiator affords block copolymers with lowerĐvalues as compared to the less active cationic macroinitiator.

    more » « less
  2. Abstract

    Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene‐containing mono‐ and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram‐negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single‐digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.

    more » « less
  3. Abstract

    Thiol–ene photopolymerization was employed in order to prepare a series of covalently crosslinked bis(phosphonium)‐containing poly(ionic liquid) (PIL) networks. While the counteranion was held constant (NTf2), the structure of the bis(phosphonium)‐containing ‘ene’ monomer was varied in order to explore the breadth of thermal, mechanical and conductive properties available for this system. Towards this end, it was determined that more flexible spacers within the cationic monomer led to PIL networks with lowerTgvalues and higher conductivities. Most notable was a two‐ to three‐orders‐of‐magnitude increase in ionic conductivity (from 10−9to 10−6S cm−1at 30 °C, 30% relative humidity) when the R group on phosphonium was changed from phenyl to isopropyl. Changing the functional group ratio to off‐stoichiometry also led to a slight increase in conductivity. Although the thermal stability (Td5%) of the phosphonium ionic liquid monomers was found to be significantly higher (>400 °C) than that of analogous imidazolium monomers, this improvement was not observed to directly transfer over to the polymer where a two‐step decomposition pathway was observed. The first step is attributed to the thiol monomer backbone while the second step correlates well with decomposition of the phosphonium portion of the PIL. © 2019 Society of Chemical Industry

    more » « less

    The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity againstStaphylococcus aureusandEscherichia coliwas assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 24–34

    more » « less
  5. Abstract

    In the search for novel quaternary ammonium compound (QAC) disinfectants that can evade bacterial resistance, we turned to natural products as a source of inspiration. Herein we used natural product ianthelliformisamine C as a scaffold to design a small library of QACs. We first synthesized ianthelliformisamine C via an amide coupling that allowed for facile purification without the need for protecting groups. We then alkylated and quaternized the internal amines to yield four novel QACs, but all but one demonstrated no antibacterial activity against the tested strains. Using a combination of membrane depolarization and permeabilization assays, we were able to demonstrate that ianthelliformisamine C and the active QAC analog enact cell death via membrane permeabilization, contrary to prior reports on ianthelliformisamine C's mechanism of action.

    more » « less