skip to main content


Title: X-Ray Diagnostics of Cassiopeia A’s “Green Monster”: Evidence for Dense Shocked Circumstellar Plasma
Abstract

The recent survey of the core-collapse supernova remnant Cassiopeia A (Cas A) with the MIRI instrument on board the James Webb Space Telescope (JWST) revealed a large structure in the interior region, referred to as the “Green Monster.” Although its location suggests that it is an ejecta structure, the infrared properties of the “Green Monster” hint at a circumstellar medium (CSM) origin. In this companion paper to the JWST Cas A paper, we investigate the filamentary X-ray structures associated with the “Green Monster” using Chandra X-ray Observatory data. We extracted spectra along the “Green Monster” as well as from shocked CSM regions. Both the extracted spectra and a principal component analysis show that the “Green Monster” emission properties are similar to those of the shocked CSM. The spectra are well fit by a model consisting of a combination of a nonequilibrium ionization model and a power-law component, modified by Galactic absorption. All the “Green Monster” spectra show a blueshift corresponding to a radial velocity of around −2300 km s−1, suggesting that the structure is on the near side of Cas A. The ionization age is aroundnet≈ 1.5 × 1011cm−3s. This translates into a preshock density of ∼12 cm−3, higher than previous estimates of the unshocked CSM. The relatively highnetand relatively low radial velocity suggest that this structure has a relatively high density compared to other shocked CSM plasma. This analysis provides yet another piece of evidence that the CSM around Cas A’s progenitor was not that of a smooth steady wind profile.

 
more » « less
NSF-PAR ID:
10495446
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
964
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L11
Size(s):
["Article No. L11"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyze the cool gas in and around 14 nearby galaxies (atz< 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi, Ni, Oi, and Ari), low-ionization (Siii, Sii, Cii, Nii, and Feii), and high-ionization (Siiii, Feiii, Nv, and Ovi) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudyphotoionization models. The Hicolumn density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forrRe. Galaxies with higher stellar mass have weaker Hiabsorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10Re. Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hicolumn density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM.

     
    more » « less
  2. Abstract

    We present a series of high-resolution echelle spectra of SN 2023ixf in M101, obtained nightly during the first week or so after discovery using PEPSI on the Large Binocular Telescope. NaiD absorption in these spectra indicates a host reddening ofE(BV) = 0.031 mag and a systemic velocity of +7 km s−1relative to the average redshift of M101. Dramatic changes are seen in the strength and shape of strong emission lines emitted by circumstellar material (CSM), including Heiiλ4686, Civλλ5801,5811, Hα, and Nivλλ7109,7123. In general, these narrow lines broaden to become intermediate-width lines before disappearing from the spectrum within a few days, indicating a limited extent to the dense CSM of around 20–30 au (or ≲1014.7cm). Hαpersists in the spectrum for about a week as an intermediate-width emission line with P Cyg absorption at 700–1300 km s−1arising in the post-shock shell of swept-up CSM. Early narrow emission lines are blueshifted and indicate an expansion speed in the pre-shock CSM of about 115 km s−1, but with even broader emission in higher-ionization lines. This is faster than the normal winds of red supergiants, suggesting some mode of eruptive mass loss from the progenitor or radiative acceleration of the CSM. A lack of narrow blueshifted absorption suggests that most of the CSM is not along our line of sight. This and several other clues indicate that the CSM of SN 2023ixf is significantly aspherical. We find that CSM lines disappear after a few days because the asymmetric CSM is engulfed by the supernova photosphere.

     
    more » « less
  3. Abstract

    Progenitor models for the “luminous” subclass of Fast Blue Optical Transients (LFBOTs; prototype: AT2018cow) are challenged to simultaneously explain all of their observed properties: fast optical rise times of days or less; peak luminosities ≳1044erg s−1; low yields ≲0.1Mof56Ni; aspherical ejecta with a wide velocity range (≲3000 km s−1to ≳0.1–0.5cwith increasing polar latitude); presence of hydrogen-depleted-but-not-free dense circumstellar material (CSM) on radial scales from ∼1014cm to ∼3 × 1016cm; embedded variable source of non-thermal X-ray/γ-rays, suggestive of a compact object. We show that all of these properties are consistent with the tidal disruption and hyper-accretion of a Wolf-Rayet (WR) star by a black hole or neutron star binary companion. In contrast with related previous models, the merger occurs with a long delay (≳100 yr) following the common envelope (CE) event responsible for birthing the binary, as a result of gradual angular momentum loss to a relic circumbinary disk. Disk-wind outflows from the merger-generated accretion flow generate the56Ni-poor aspherical ejecta with the requisite velocity range. The optical light curve is powered primarily by reprocessing X-rays from the inner accretion flow/jet, though CSM shock interaction also contributes. Primary CSM sources include WR mass loss from the earliest stages of the merger (≲1014cm) and the relic CE disk and its photoevaporation-driven wind (≳1016cm). Longer delayed mergers may instead give rise to supernovae Type Ibn/Icn (depending on the WR evolutionary state), connecting these transient classes with LFBOTs.

     
    more » « less
  4. Abstract

    The Airborne Infrared Spectrometer (AIR-Spec) offers an unprecedented opportunity to explore the near-infrared (NIR) wavelength range. It has been flown at two total solar eclipses, in 2017 and 2019. The wavelength range of the much-improved instrument on the second flight (2019 July 2) was shifted to cover two density-sensitive lines from Sxi. In this paper we study detailed diagnostics for temperature, electron density, and elemental abundances by comparing results from AIR-Spec slit positions above the east and west limbs with those from Hinode/EIS, the PolarCam detector, and SDO/AIA. We find very good agreement in the electron densities obtained from the EIS EUV line ratios, those from the NIR Sxiratio, and those obtained from the polarized brightness PolarCam measurements. Electron densities ranged from logNe[cm−3] = 8.4 near the limb to 7.2 atR0= 1.3. EIS spectra indicate that the temperature distribution above the west limb is near isothermal at around 1.3 MK, while that on the east has an additional higher-Tcomponent. The AIR-Spec radiances in Sixand Sxi, as well as the AIA data in the 171, 193, and 211 Å bands, are consistent with the EIS results. EIS and AIR-Spec data indicate that the sulfur abundance (relative to silicon) is photospheric in both regions, confirming our previous results of the 2017 eclipse. The AIA data also indicate that the absolute iron abundance is photospheric. Our analysis confirms the importance of the diagnostic potential of the NIR wavelength range and that this important wavelength range can be used reliably and independently to determine coronal plasma parameters.

     
    more » « less
  5. Abstract

    We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.

     
    more » « less