skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A JWST Survey of the Supernova Remnant Cassiopeia A
Abstract We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.  more » « less
Award ID(s):
2209451 2206532 2205314 1813825
PAR ID:
10500876
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
965
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L27
Size(s):
Article No. L27
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract JWST observations of the young Galactic supernova remnant Cassiopeia A revealed an unexpected structure seen as a green emission feature in colored composite MIRI F1130W and F1280W images—hence dubbed the Green Monster—that stretches across the central parts of the remnant in projection. Combining the kinematic information from NIRSpec and the MIRI Medium Resolution Spectrograph with the multiwavelength imaging from NIRCam and MIRI, we associate the Green Monster with circumstellar material (CSM) that was lost during an asymmetric mass-loss phase. MIRI images are dominated by dust emission, but their spectra show emission lines from Ne, H, and Fe with low radial velocities indicative of a CSM nature. An X-ray analysis of this feature in a companion paper supports its CSM nature and detects significant blueshifting, thereby placing the Green Monster on the nearside, in front of the Cas A supernova remnant. The most striking features of the Green Monster are dozens of almost perfectly circular 1″–3″ sized holes, most likely created by interaction between high-velocity supernova ejecta material and the CSM. Further investigation is needed to understand whether these holes were formed by small 8000–10,500 km s−1N-rich ejecta knots that penetrated and advanced out ahead of the remnant’s 5000–6000 km s−1outer blast wave or by narrow ejecta fingers that protrude into the forward-shocked CSM. The detection of the Green Monster provides further evidence of the highly asymmetric mass loss that Cas A’s progenitor star underwent prior to its explosion. 
    more » « less
  2. Abstract The recent survey of the core-collapse supernova remnant Cassiopeia A (Cas A) with the MIRI instrument on board the James Webb Space Telescope (JWST) revealed a large structure in the interior region, referred to as the “Green Monster.” Although its location suggests that it is an ejecta structure, the infrared properties of the “Green Monster” hint at a circumstellar medium (CSM) origin. In this companion paper to the JWST Cas A paper, we investigate the filamentary X-ray structures associated with the “Green Monster” using Chandra X-ray Observatory data. We extracted spectra along the “Green Monster” as well as from shocked CSM regions. Both the extracted spectra and a principal component analysis show that the “Green Monster” emission properties are similar to those of the shocked CSM. The spectra are well fit by a model consisting of a combination of a nonequilibrium ionization model and a power-law component, modified by Galactic absorption. All the “Green Monster” spectra show a blueshift corresponding to a radial velocity of around −2300 km s−1, suggesting that the structure is on the near side of Cas A. The ionization age is aroundnet≈ 1.5 × 1011cm−3s. This translates into a preshock density of ∼12 cm−3, higher than previous estimates of the unshocked CSM. The relatively highnetand relatively low radial velocity suggest that this structure has a relatively high density compared to other shocked CSM plasma. This analysis provides yet another piece of evidence that the CSM around Cas A’s progenitor was not that of a smooth steady wind profile. 
    more » « less
  3. Abstract We present JWST NIRCam (F356W and F444W filters) and MIRI (F770W) images and NIRSpec Integral Field Unit (IFU) spectroscopy of the young Galactic supernova remnant Cassiopeia A (Cas A) to probe the physical conditions for molecular CO formation and destruction in supernova ejecta. We obtained the data as part of a JWST survey of Cas A. The NIRCam and MIRI images map the spatial distributions of synchrotron radiation, Ar-rich ejecta, and CO on both large and small scales, revealing remarkably complex structures. The CO emission is stronger at the outer layers than the Ar ejecta, which indicates the re-formation of CO molecules behind the reverse shock. NIRSpec-IFU spectra (3–5.5μm) were obtained toward two representative knots in the NE and S fields that show very different nucleosynthesis characteristics. Both regions are dominated by the bright fundamental rovibrational band of CO in the two R and P branches, with strong [Arvi] and relatively weaker, variable strength ejecta lines of [Siix], [Caiv], [Cav], and [Mgiv]. The NIRSpec-IFU data resolve individual ejecta knots and filaments spatially and in velocity space. The fundamental CO band in the JWST spectra reveals unique shapes of CO, showing a few tens of sinusoidal patterns of rovibrational lines with pseudocontinuum underneath, which is attributed to the high-velocity widths of CO lines. Our results with LTE modeling of CO emission indicate a temperature of ∼1080 K and provide unique insight into the correlations between dust, molecules, and highly ionized ejecta in supernovae and have strong ramifications for modeling dust formation that is led by CO cooling in the early Universe. 
    more » « less
  4. Context. Recent observations with the James Webb Space Telescope (JWST) have revealed unprecedented details of an intricate filamentary structure of unshocked ejecta within the young supernova remnant (SNR) Cassiopeia A (Cas A), offering new insights into the mechanisms governing supernova (SN) explosions and the subsequent evolution of ejecta. Aims. We aim to investigate the origin and evolution of the newly discovered web-like network of ejecta filaments in Cas A. Our specific objectives are: (i) to characterize the three-dimensional (3D) structure and kinematics of the filamentary network and (ii) to identify the physical mechanisms responsible for its formation. Methods. We performed high-resolution, 3D hydrodynamic (HD) and magneto-hydrodynamic (MHD) simulations to model the evolution of a neutrino-driven SN from the explosion to its remnant with the age of 1000 years. The initial conditions, set shortly after the shock breakout at the stellar surface, are based on a 3D neutrino-driven SN model that closely matches the basic properties of Cas A. Results. We found that the magnetic field has little impact on the evolution of unshocked ejecta, so we focused most of the analysis on the HD simulations. A web-like network of ejecta filaments, with structures compatible with those observed by JWST (down to scales ≈0.01 pc), naturally forms during the SN explosion. The filaments result from the combined effects of processes occurring soon after the core collapse, including the expansion of neutrino-heated bubbles formed within the first second after the explosion, hydrodynamic instabilities triggered during the blast propagation through the stellar interior, and the Ni-bubble effect following the shock breakout. The interaction of the reverse shock with the ejecta progressively disrupts the filaments through the growth of hydrodynamic instabilities. By around 700 years, the filamentary network becomes unobservable. Conclusions. According to our models, the filaments observed by JWST in Cas A most likely preserve a “memory” of the early explosion conditions, reflecting the processes active during and immediately after the SN event. Notably, a filamentary network closely resembling that observed in Cas A is naturally produced by a neutrino-driven SN explosion. 
    more » « less
  5. ABSTRACT JWST/NIRCam obtained high angular resolution (0.05–0.1 arcsec), deep near-infrared 1–5 $$\mu$$m imaging of Supernova (SN) 1987A taken 35 yr after the explosion. In the NIRCam images, we identify: (1) faint H2 crescents, which are emissions located between the ejecta and the equatorial ring, (2) a bar, which is a substructure of the ejecta, and (3) the bright 3–5 $$\mu$$m continuum emission exterior to the equatorial ring. The emission of the remnant in the NIRCam 1–2.3 $$\mu$$m images is mostly due to line emission, which is mostly emitted in the ejecta and in the hotspots within the equatorial ring. In contrast, the NIRCam 3–5 $$\mu$$m images are dominated by continuum emission. In the ejecta, the continuum is due to dust, obscuring the centre of the ejecta. In contrast, in the ring and exterior to the ring, synchrotron emission contributes a substantial fraction to the continuum. Dust emission contributes to the continuum at outer spots and diffuse emission exterior to the ring, but little within the ring. This shows that dust cooling and destruction time-scales are shorter than the synchrotron cooling time-scale, and the time-scale of hydrogen recombination in the ring is even longer than the synchrotron cooling time-scale. With the advent of high sensitivity and high angular resolution images provided by JWST/NIRCam, our observations of SN 1987A demonstrate that NIRCam opens up a window to study particle-acceleration and shock physics in unprecedented details, probed by near-infrared synchrotron emission, building a precise picture of how an SN evolves. 
    more » « less