skip to main content


Title: SAGUARO: Time-domain Infrastructure for the Fourth Gravitational-wave Observing Run and Beyond
Abstract

We present upgraded infrastructure for Searches After Gravitational waves Using ARizona Observatories (SAGUARO) during LIGO, Virgo, and KAGRA’s fourth gravitational-wave (GW) observing run (O4). These upgrades implement many of the lessons we learned after a comprehensive analysis of potential electromagnetic counterparts to the GWs discovered during the previous observing run. We have developed a new web-based target and observation manager (TOM) that allows us to coordinate sky surveys, vet potential counterparts, and trigger follow-up observations from one centralized portal. The TOM includes software that aggregates all publicly available information on the light curves and possible host galaxies of targets, allowing us to rule out potential contaminants like active galactic nuclei, variable stars, solar system objects, and preexisting supernovae, as well as to assess the viability of any plausible counterparts. We have also upgraded our image-subtraction pipeline by assembling deeper reference images and training a new neural-network-based real–bogus classifier. These infrastructure upgrades will aid coordination by enabling the prompt reporting of observations, discoveries, and analysis to the GW follow-up community, and put SAGUARO in an advantageous position to discover kilonovae in the remainder of O4 and beyond. Many elements of our open-source software stack have broad utility beyond multimessenger astronomy, and will be particularly relevant in the “big data” era of transient discoveries by the Vera C. Rubin Observatory.

 
more » « less
NSF-PAR ID:
10495473
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 35
Size(s):
["Article No. 35"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 2017, the LIGO and Virgo gravitational-wave (GW) detectors, in conjunction with electromagnetic (EM) astronomers, observed the first GW multimessenger astrophysical event, the binary neutron star (BNS) merger GW170817. This marked the beginning of a new era in multimessenger astrophysics. To discover further GW multimessenger events, we explore the synergies between the Transiting Exoplanet Survey Satellite (TESS) and GW observations triggered by the LIGO–Virgo–KAGRA Collaboration (LVK) detector network. TESS's extremely wide field of view (∼2300 deg2) means that it could overlap with large swaths of GW localizations, which often span hundreds of square degrees or more. In this work, we use a recently developed transient detection pipeline to search TESS data collected during the LVK’s third observing run, O3, for any EM counterparts. We find no obvious counterparts brighter than about 17th magnitude in the TESS bandpass. Additionally, we present end-to-end simulations of BNS mergers, including their detection in GWs and simulations of light curves, to identify TESS's kilonova discovery potential for the LVK's next observing run (O4). In the most optimistic case, TESS will observe up to one GW-found BNS merger counterpart per year. However, TESS may also find up to five kilonovae that did not trigger the LVK network, emphasizing that EM-triggered GW searches may play a key role in future kilonova detections. We also discuss how TESS can help place limits on EM emission from binary black hole mergers and rapidly exclude large sky areas for poorly localized GW events.

     
    more » « less
  2. An advanced LIGO and Virgo’s third observing run brought another binary neutron star merger (BNS) and the first neutron-star black hole mergers. While no confirmed kilonovae were identified in conjunction with any of these events, continued improvements of analyses surrounding GW170817 allow us to project constraints on the Hubble Constant (H0), the Galactic enrichment fromr-process nucleosynthesis, and ultra-dense matter possible from forthcoming events. Here, we describe the expected constraints based on the latest expected event rates from the international gravitational-wave network and analyses of GW170817. We show the expected detection rate of gravitational waves and their counterparts, as well as how sensitive potential constraints are to the observed numbers of counterparts. We intend this analysis as support for the community when creating scientifically driven electromagnetic follow-up proposals. During the next observing run O4, we predict an annual detection rate of electromagnetic counterparts from BNS of0.430.26+0.58(1.971.2+2.68) for the Zwicky Transient Facility (Rubin Observatory).

     
    more » « less
  3. null (Ed.)
    ABSTRACT Joint multimessenger observations with gravitational waves and electromagnetic (EM) data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on 2019 April 1; during the 11 months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no EM counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the next five months of the campaign from 2019 October to 2020 March. We highlight two neutron star–black hole candidates (S191205ah and S200105ae), two binary neutron star candidates (S191213g and S200213t), and a binary merger with a possible neutron star and a ‘MassGap’ component, S200115j. Assuming that the gravitational-wave (GW) candidates are of astrophysical origin and their location was covered by optical telescopes, we derive possible constraints on the matter ejected during the events based on the non-detection of counterparts. We find that the follow-up observations during the second half of the third observing run did not meet the necessary sensitivity to constrain the source properties of the potential GW candidate. Consequently, we suggest that different strategies have to be used to allow a better usage of the available telescope time. We examine different choices for follow-up surveys to optimize sky localization coverage versus observational depth to understand the likelihood of counterpart detection. 
    more » « less
  4. Abstract

    We address the problem of optimally identifying all kilonovae detected via gravitational-wave emission in the upcoming LIGO/Virgo/KAGRA observing run, O4, which is expected to be sensitive to a factor of ∼7 more binary neutron star (BNS) alerts than previously. Electromagnetic follow-up of all but the brightest of these new events will require >1 m telescopes, for which limited time is available. We present an optimized observing strategy for the DECam during O4. We base our study on simulations of gravitational-wave events expected for O4 and wide-prior kilonova simulations. We derive the detectabilities of events for realistic observing conditions. We optimize our strategy for confirming a kilonova while minimizing telescope time. For a wide range of kilonova parameters, corresponding to a fainter kilonova compared to GW170817/AT 2017gfo, we find that, with this optimal strategy, the discovery probability for electromagnetic counterparts with the DECam is ∼80% at the nominal BNS gravitational-wave detection limit for O4 (190 Mpc), which corresponds to an ∼30% improvement compared to the strategy adopted during the previous observing run. For more distant events (∼330 Mpc), we reach an ∼60% probability of detection, a factor of ∼2 increase. For a brighter kilonova model dominated by the blue component that reproduces the observations of GW170817/AT 2017gfo, we find that we can reach ∼90% probability of detection out to 330 Mpc, representing an increase of ∼20%, while also reducing the total telescope time required to follow up events by ∼20%.

     
    more » « less
  5. ABSTRACT

    We present a comprehensive, configurable open-source software framework for estimating the rate of electromagnetic detection of kilonovae (KNe) associated with gravitational wave detections of binary neutron star (BNS) mergers. We simulate the current LIGO-Virgo-KAGRA (LVK) observing run (O4) using current sensitivity and uptime values as well as using predicted sensitivites for the next observing run (O5). We find the number of discoverable kilonovae during LVK O4 to be ${ 1}_{- 1}^{+ 4}$ or ${ 2 }_{- 2 }^{+ 3 }$, (at 90 per cent confidence) depending on the distribution of NS masses in coalescing binaries, with the number increasing by an order of magnitude during O5 to ${ 19 }_{- 11 }^{+ 24 }$. Regardless of mass model, we predict at most five detectable KNe (at 95 per cent confidence) in O4. We also produce optical and near-infrared light curves that correspond to the physical properties of each merging system. We have collated important information for allocating observing resources for search and follow-up observations, including distributions of peak magnitudes in several broad-bands and time-scales for which specific facilities can detect each KN. The framework is easily adaptable, and new simulations can quickly be produced in response to updated information such as refined merger rates and NS mass distributions. Finally, we compare our suite of simulations to the thus-far completed portion of O4 (as of 2023, October 14), finding a median number of discoverable KNe of 0 and a 95 percentile upper limit of 2, consistent with no detections so far in O4.

     
    more » « less