skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Basic Convex Analysis in Metric Spaces with Bounded Curvature
Differentiable structure ensures that many of the basics of classical convex analysis extend naturally from Euclidean space to Riemannian manifolds. Without such structure, however, extensions are more challenging. Nonetheless, in Alexandrov spaces with curvature bounded above (but possibly positive), we develop several basic building blocks. We define subgradients via pro- jection and the normal cone, prove their existence, and relate them to the classical affine minorant property. Then, in what amounts to a simple calculus or duality result, we develop a necessary optimality condition for minimizing the sum of two convex functions.  more » « less
Award ID(s):
2006990
PAR ID:
10495483
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM Journal on Optimization
Volume:
34
Issue:
1
ISSN:
1052-6234
Page Range / eLocation ID:
366 to 388
Subject(s) / Keyword(s):
subdifferential, normal cone, Alexandrov spaces
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50. 
    more » « less
  2. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an n-dimensional convex body within multiplicative error ϵ using Õ (n3+n2.5/ϵ) queries to a membership oracle and Õ (n5+n4.5/ϵ) additional arithmetic operations. For comparison, the best known classical algorithm uses Õ (n4+n3/ϵ2) queries and Õ (n6+n5/ϵ2) additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. 
    more » « less
  3. In this paper, we have studied a decomposition method for solving a class of non-convex two-stage stochastic programs, where both the objective and constraints of the second-stageproblem are nonlinearly parameterized by the first-stage variables. Due to the failure of the Clarkeregularity of the resulting nonconvex recourse function, classical decomposition approaches such asBenders decomposition and (augmented) Lagrangian-based algorithms cannot be directly generalizedto solve such models. By exploring an implicitly convex-concave structure of the recourse function,we introduce a novel decomposition framework based on the so-called partial Moreau envelope. Thealgorithm successively generates strongly convex quadratic approximations of the recourse functionbased on the solutions of the second-stage convex subproblems and adds them to the first-stage mas-ter problem. Convergence has been established for both a fixed number of scenarios and a sequentialinternal sampling strategy. Numerical experiments are conducted to demonstrate the effectiveness of the proposed algorithm. 
    more » « less
  4. null (Ed.)
    Abstract Combining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biological swarming. Our method proceeds as follows: first, we discretize in time, either via the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce. Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein distance to reduce computing the solution of the discrete time equations to solving fully discrete minimization problems, with strictly convex objective functions and linear constraints. Third, we compute the minimizers by applying a recently introduced, provably convergent primal dual splitting scheme for three operators (Yan in J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure, our method overcomes stability issues present in previous numerical work built on explicit time discretizations, which suffer due to the equations’ strong nonlinearities and degeneracies. Our method is also naturally positivity and mass preserving and, in the case of the JKO scheme, energy decreasing. We prove that minimizers of the fully discrete problem converge to minimizers of the spatially continuous, discrete time problem as the spatial discretization is refined. We conclude with simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our approach, including higher-order convergence our novel Crank–Nicolson-type method, when compared to the classical JKO method. 
    more » « less
  5. We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing the polynomial and rational approximants can be taken to have a simple geometric structure. In particular, when approximating a function $$f$$ on a compact set $$K$$, the critical points of our approximants may be taken to lie in any given domain containing $$K$$, and all the critical values in any given neighborhood of the polynomially convex hull of $f(K)$. 
    more » « less