skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pollinators differ in their contribution to the male fitness of a self‐incompatible composite
Abstract PremiseReproductive fitness in plants is often determined by the quantity and quality of pollen transferred by pollinators. However, many fitness studies measure only female fitness or rely on proxies for male fitness. Here we assessed how five bee taxon groups affect male fitness in a prairie plant by quantifying pollen removal, visitation, and siring success using paternity assignments and a unique pollinator visitation experiment. MethodsInEchinacea angustifolia, we measured per‐visit pollen removal for each pollinator taxon and estimated the number of pollen grains needed for successful ovule fertilization. Additionally, we directly measured pollinator influence on siring by allowing only one bee taxon to visit each pollen‐donor plant, while open‐pollinated plants acted as unrestricted pollen recipients. We genotyped the resulting offspring, assigned paternity, and used aster statistical models to quantify siring success. ResultsSiring success of pollen‐donor plants differed among the five pollinator groups. Nongrooming male bees were associated with increased siring success. Bees from all taxa removed most of the flowering head's pollen in one visit. However, coneflower‐specialist beeAndrena helianthiformisremoved the most pollen per visit. Female fitness and proxy measures of male fitness, such as pollinator visitation and pollen removal, did not align with our direct quantifications of male fitness. ConclusionsOur results illustrate the need for more studies to directly quantify male fitness, and we caution against using male fitness proxy measures. In addition, conservation efforts that preserve a diverse pollinator community can benefit plants in fragmented landscapes.  more » « less
Award ID(s):
1557075 1125997
PAR ID:
10495645
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
American Journal of Botany
Volume:
110
Issue:
6
ISSN:
0002-9122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arceo-Gómez, Gerardo (Ed.)
    Abstract Researchers have long assumed that plant spatial location influences plant reproductive success and pollinator foraging behaviour. For example, many flowering plant populations have small, linear or irregular shapes that increase the proportion of plants on the edge, which may reduce mating opportunities through both male and female function. Additionally, plants that rely on pollinators may be particularly vulnerable to edge effects if those pollinators exhibit restricted foraging and pollen carryover is limited. To explore the effects of spatial location (edge vs. interior) on siring success, seed production, pollinator foraging patterns and pollen-mediated gene dispersal, we established a square experimental array of 49 Mimulus ringens (monkeyflower) plants. We observed foraging patterns of pollinating bumblebees and used paternity analysis to quantify male and female reproductive success and mate diversity for plants on the edge versus interior. We found no significant differences between edge and interior plants in the number of seeds sired, mothered or the number of sires per fruit. However, we found strong differences in pollinator behaviour based on plant location, including 15 % lower per flower visitation rates and substantially longer interplant moves for edge plants. This translated into 40 % greater pollen-mediated gene dispersal for edge than for interior plants. Overall, our results suggest that edge effects are not as strong as is commonly assumed, and that different plant reproduction parameters respond to spatial location independently. 
    more » « less
  2. Abstract Background Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. Scope In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. Conclusions The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success. 
    more » « less
  3. PremiseGenetically diverse sibships are thought to increase parental fitness through a reduction in the intensity of sib competition, and through increased opportunities for seedling establishment in spatially or temporally heterogeneous environments. Nearly all research on mate diversity in flowering plants has focused on the number of fathers siring seeds within a fruit or on a maternal plant. Yet as hermaphrodites, plants can also accrue mate diversity by siring offspring on several pollen recipients in a population. Here we explore whether mate composition overlaps between the dual sex functions, and discuss the implications for plant reproductive success. MethodsWe established an experimental population of 49Mimulus ringens(monkeyflower) plants, each trimmed to a single flower. Following pollination by wild bees, we quantified mate composition for each flower through both paternal and maternal function. Parentage was successfully assigned to 240 progeny, 98% of the sampled seeds. ResultsComparison of mate composition between male and female function revealed high mate diversity, with almost no outcross mates shared between the two sexual functions of the same flower. ConclusionsDual sex roles contribute to a near doubling of mate diversity in our experimental population ofMimulus ringens. This finding may help explain the maintenance of hermaphroditism under conditions that would otherwise favor the evolution of separate sexes. 
    more » « less
  4. Abstract Pollen protein content has been demonstrated to be an essential nutritional component for bees and thus important in mediating plant–pollinator interactions. However, little is known on the drivers and consequences of among‐species variation in pollen protein content and how this can impact male and female reproductive success across plant species. Among‐species variation in resources allocated to pollen nutrition could further be constrained by life‐history strategies (e.g. survival‐reproduction trade‐offs) or evolutionary history.Here, we surveyed pollen protein content for 29 species within a diverse co‐flowering community and evaluated the effect of pollen protein on male and female reproductive success. We also tested the role of life history (annuals vs. perennials) and phylogeny in mediating differences in resource allocation to pollen nutrition.We found that pollen protein content influences components of male (bee visitor abundance and pollen dispersal) but not female (conspecific pollen deposition and pollen tube growth) reproductive success, suggesting this trait affects plants only via male function. This sex‐specific effect further suggests the potential for sexual conflicts driven by differential investment on this trait. We found no phylogenetic signal on pollen protein content. However, pollen protein content was higher in annual compared to perennial species suggesting survival versus reproduction trade‐offs also contribute to variation in pollen protein at the community level.Our study underscores the importance of understanding the ecological and evolutionary drivers of pollen protein content across plant species. Our results further suggest the existence of sexual conflicts and ecological trade‐offs mediated by differential investment in pollen nutritional quality, with important implications for community assembly and the structure of plant–pollinator interactions. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Tortosa, Pablo (Ed.)
    ABSTRACT Social bees have been extensively studied for their gut microbial functions, but the significance of the gut microbiota in solitary bees remains less explored. Solitary bee,Megachile rotundatafemales provision their offspring with pollen from various plant species, harboring a diverse microbial community that colonizes larvae guts. TheApilactobacillusis the most abundant microbe, but evidence concerning the effects ofApilactobacillusand other provision microbes on growth and survival are lacking. We hypothesized that the presence ofApilactobacillusin abundance would enhance larval and prepupal development, weight, and survival, while the absence of intact microbial communities was expected to have a negative impact on bee fitness. We reared larvae on pollen provisions with naturally collected microbial communities (Natural pollen) or devoid of microbial communities (Sterile pollen). We also assessed the impact of introducingApilactobacillus micheneriby adding it to both types of pollen provisions. Feeding larvae with sterile pollen +A. micheneriled to the highest mortality rate, followed by natural pollen +A. micheneri, and sterile pollen. Larval development was significantly delayed in groups fed with sterile pollen. Interestingly, larval and prepupal weights did not significantly differ across treatments compared to natural pollen-fed larvae. 16S rRNA gene sequencing found a dominance ofSodalis, whenA. micheneriwas introduced to natural pollen. The presence ofSodaliswith abundantA. micheneri suggests potential crosstalk between both, shaping bee nutrition and health. Hence, this study highlights that the reliance on nonhost-specific environmental bacteria may not impact fitness ofM. rotundata.IMPORTANCEThis study investigates the impact of environmentally acquired gut microbes of solitary bee fitness with insights into the microbial ecology of bee and their health. While the symbiotic microbiome is well-studied in social bees, the role of environmental acquired microbiota in solitary bees remains unclear. Assessing this relationship in a solitary pollinator, the leaf-cutting bee,Megachile rotundata, we discovered that this bee species does not depend on the diverse environmental bacteria found in pollen for either its larval growth or survival. Surprisingly, high concentrations of the most abundant pollen bacteria, Apilactobacillus micheneridid not consistently benefit bee fitness, but caused larval mortality. Our findings also suggest an interaction betweenApilactobacillusand theSodalisand perhaps their role in bee nutrition. Hence, this study provides significant insights that contribute to understanding the fitness, conservation, and pollination ecology of other solitary bee species in the future. 
    more » « less