This work elucidates the structural evolution of a commercial‐type iron oxide‐based high temperature water–gas shift (HT‐WGS) catalyst during activation and deactivation stages. The findings highlight the importance of Cu–FeO
Redox‐induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi‐interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2gas, a reaction pathway of CuO → monoclinic m‐Cu4O3→ Cu2O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2O/m‐Cu4O3interface shows a diffuse‐type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m‐Cu4O3/CuO transformation. Together with atomistic modeling, it is shown that such a multi‐interface transformation results from the surface‐reaction‐induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2O and m‐Cu4O3, and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.
more » « less- PAR ID:
- 10495712
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 20
- Issue:
- 11
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x interfaces. Based on the new insights, future improvement of commercial iron‐based catalysts should focus on stabilization of the active Cu–FeOx interface. Much effort has been devoted to understanding the structure, mechanism, and promotion of the commercial‐type CuO–Cr2O3–Fe2O3catalyst for the high temperature water–gas shift (HT‐WGS) reaction. However, structural evolution of the catalyst during the activation and deactivation stages was rarely reported. Herein, catalyst characterization, temperature‐programmed studies, and kinetic analysis were conducted on iron oxide‐based HT‐WGS catalysts. Addition of Cu was found to accelerate both the bulk (Fe2O3 → Fe3O4) and surface (active FeOx –Cu interface) transformations during the catalyst activation stage. During catalyst deactivation, Cu accelerated both sintering of the Fe3O4bulk phase and unfavorable encapsulation of the metallic Cu particles with a substantial FeOx overlayer. The loss of the initial active Cu–FeOx interfacial sites reversed the promotional effect of Cu. -
Abstract Reactive flash sintering has been demonstrated as a method to rapidly densify and synthesize ceramic materials, but determining the extent of chemical reactions can be complex since the maximum temperature reached by the sample may be brief in time. The black body radiation (BBR) model has been shown to accurately predict the sample temperature during the steady state of flash (stage III). This work demonstrates situations where the BBR model alone does not accurately predict when a phase transformation will occur. We examine the model reactions of CuO reduction to Cu2O during stage II and Mn2O3reduction to Mn3O4in stage III. In CuO, highly resistive samples result in initially localized current flow, a stochastic process resulting in inhomogeneous heating and error in the BBR model during stage II. CuO reduction does not occur in constant heating rate experiments with 6.25 V/mm fields, even though the sample temperature momentarily exceeds the phase transformation temperature. Increased furnace heating to 950°C before application of a field is required to drive the transition. In Mn2O3, the calculated sample temperature of the gauge is less than the transformation temperature, but localized heating at the contact will exceed the transformation temperature, causing the transformation to propagate away from the electrode during stage III. This work demonstrates two forms of inhomogeneity (local, stochastic current flow, and local contact resistance) that result in a complex thermal profile of the sample. This profile should be interrogated to understand reaction kinetics, and can be beneficial when engineered.
-
Abstract In recent years, area‐selective atomic layer deposition (AS‐ALD) has attracted increasing interest for its applications in back‐end interconnect processes, and selective deposition of Al2O3is of particular interest because Al2O3can serve as an etch hard mask. However, Al2O3is one of the most difficult ALD systems to block. In this work, a strategy is presented to enhance the blocking ability of dodecanethiol (DDT) self‐assembled monolayers (SAMs) against Al2O3ALD. It is shown that by conducting DDT deposition on a slightly oxidized Cu surface, which is mainly composed of Cu2O, rather than on a freshly acid‐etched Cu surface, which mainly consists of metallic Cu, the quality of the DDT SAM can be improved. It is further shown that the DDT SAMs formed on Cu2O‐covered Cu substrates are about 3–4 times more effective in blocking Al2O3than that on acid‐etched Cu surfaces when ALD is performed under subsaturation condition. However, as the Cu oxidation process continues, CuO is formed and the blocking ability of DDT degrades. Finally, selective Al2O3deposition on DDT‐treated Cu/low‐
k patterns using the combined strategy of Cu oxidation and subsaturation conditions achieves selectivity of 0.99 after 4 nm of Al2O3ALD. -
The local structure of the highly “overdoped” 95 K superconductor Sr2CuO3.3determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to the
c axis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO2planes, magnetization along thec axis, and a termination of the superconductivity when the excess charge on the CuO2Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O–based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2planes while retaining exceptionally high transition temperatures. -
Abstract The interface between cathode and electrolyte is a significant source of large interfacial resistance in solid‐state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two‐step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half‐cell.