skip to main content


This content will become publicly available on November 8, 2024

Title: Atomic Dynamics of Multi‐Interfacial Migration and Transformations
Abstract

Redox‐induced interconversions of metal oxidation states typically result in multiple phase boundaries that separate chemically and structurally distinct oxides and suboxides. Directly probing such multi‐interfacial reactions is challenging because of the difficulty in simultaneously resolving the multiple reaction fronts at the atomic scale. Using the example of CuO reduction in H2gas, a reaction pathway of CuO → monoclinic m‐Cu4O3→ Cu2O is demonstrated and identifies interfacial reaction fronts at the atomic scale, where the Cu2O/m‐Cu4O3interface shows a diffuse‐type interfacial transformation; while the lateral flow of interfacial ledges appears to control the m‐Cu4O3/CuO transformation. Together with atomistic modeling, it is shown that such a multi‐interface transformation results from the surface‐reaction‐induced formation of oxygen vacancies that diffuse into deeper atomic layers, thereby resulting in the formation of the lower oxides of Cu2O and m‐Cu4O3, and activate the interfacial transformations. These results demonstrate the lively dynamics at the reaction fronts of the multiple interfaces and have substantial implications for controlling the microstructure and interphase boundaries by coupling the interplay between the surface reaction dynamics and the resulting mass transport and phase evolution in the subsurface and bulk.

 
more » « less
NSF-PAR ID:
10495712
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
20
Issue:
11
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work elucidates the structural evolution of a commercial‐type iron oxide‐based high temperature water–gas shift (HT‐WGS) catalyst during activation and deactivation stages. The findings highlight the importance of Cu–FeOxinterfaces. Based on the new insights, future improvement of commercial iron‐based catalysts should focus on stabilization of the active Cu–FeOxinterface. Much effort has been devoted to understanding the structure, mechanism, and promotion of the commercial‐type CuO–Cr2O3–Fe2O3catalyst for the high temperature water–gas shift (HT‐WGS) reaction. However, structural evolution of the catalyst during the activation and deactivation stages was rarely reported. Herein, catalyst characterization, temperature‐programmed studies, and kinetic analysis were conducted on iron oxide‐based HT‐WGS catalysts. Addition of Cu was found to accelerate both the bulk (Fe2O3 → Fe3O4) and surface (active FeOx–Cu interface) transformations during the catalyst activation stage. During catalyst deactivation, Cu accelerated both sintering of the Fe3O4bulk phase and unfavorable encapsulation of the metallic Cu particles with a substantial FeOxoverlayer. The loss of the initial active Cu–FeOxinterfacial sites reversed the promotional effect of Cu.

     
    more » « less
  2. Abstract

    Reactive flash sintering has been demonstrated as a method to rapidly densify and synthesize ceramic materials, but determining the extent of chemical reactions can be complex since the maximum temperature reached by the sample may be brief in time. The black body radiation (BBR) model has been shown to accurately predict the sample temperature during the steady state of flash (stage III). This work demonstrates situations where the BBR model alone does not accurately predict when a phase transformation will occur. We examine the model reactions of CuO reduction to Cu2O during stage II and Mn2O3reduction to Mn3O4in stage III. In CuO, highly resistive samples result in initially localized current flow, a stochastic process resulting in inhomogeneous heating and error in the BBR model during stage II. CuO reduction does not occur in constant heating rate experiments with 6.25 V/mm fields, even though the sample temperature momentarily exceeds the phase transformation temperature. Increased furnace heating to 950°C before application of a field is required to drive the transition. In Mn2O3, the calculated sample temperature of the gauge is less than the transformation temperature, but localized heating at the contact will exceed the transformation temperature, causing the transformation to propagate away from the electrode during stage III. This work demonstrates two forms of inhomogeneity (local, stochastic current flow, and local contact resistance) that result in a complex thermal profile of the sample. This profile should be interrogated to understand reaction kinetics, and can be beneficial when engineered.

     
    more » « less
  3. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

     
    more » « less
  4. Abstract

    The gas‐phase reaction of organic acids with SO3has been recognized as essential in promoting aerosol‐particle formation. However, at the air–water interface, this reaction is much less understood. We performed systematic Born–Oppenheimer molecular dynamics (BOMD) simulations to study the reaction of various organic acids with SO3on a water droplet. The results show that with the involvement of interfacial water molecules, organic acids can react with SO3and form the ion pair of sulfuric‐carboxylic anhydride and hydronium. This mechanism is in contrast to the gas‐phase reaction mechanisms in which the organic acid either serves as a catalyst for the reaction between SO3and H2O or reacts with SO3directly. The distinct reaction at the water surface has important atmospheric implications, for example, promoting water condensation, uptaking atmospheric condesation species, and incorporating “SO42−” into organic species in aerosol particles. Therefore, this reaction, typically occurring within a few picoseconds, provides another pathway towards aerosol formation.

     
    more » « less
  5. Abstract

    The gas‐phase reaction of organic acids with SO3has been recognized as essential in promoting aerosol‐particle formation. However, at the air–water interface, this reaction is much less understood. We performed systematic Born–Oppenheimer molecular dynamics (BOMD) simulations to study the reaction of various organic acids with SO3on a water droplet. The results show that with the involvement of interfacial water molecules, organic acids can react with SO3and form the ion pair of sulfuric‐carboxylic anhydride and hydronium. This mechanism is in contrast to the gas‐phase reaction mechanisms in which the organic acid either serves as a catalyst for the reaction between SO3and H2O or reacts with SO3directly. The distinct reaction at the water surface has important atmospheric implications, for example, promoting water condensation, uptaking atmospheric condesation species, and incorporating “SO42−” into organic species in aerosol particles. Therefore, this reaction, typically occurring within a few picoseconds, provides another pathway towards aerosol formation.

     
    more » « less