We study active learning methods for single index models of the form $$F({\bm x}) = f(\langle {\bm w}, {\bm x}\rangle)$$, where $$f:\mathbb{R} \to \mathbb{R}$$ and $${\bx,\bm w} \in \mathbb{R}^d$$. In addition to their theoretical interest as simple examples of non-linear neural networks, single index models have received significant recent attention due to applications in scientific machine learning like surrogate modeling for partial differential equations (PDEs). Such applications require sample-efficient active learning methods that are robust to adversarial noise. I.e., that work even in the challenging agnostic learning setting. We provide two main results on agnostic active learning of single index models. First, when $$f$$ is known and Lipschitz, we show that $$\tilde{O}(d)$$ samples collected via {statistical leverage score sampling} are sufficient to learn a near-optimal single index model. Leverage score sampling is simple to implement, efficient, and already widely used for actively learning linear models. Our result requires no assumptions on the data distribution, is optimal up to log factors, and improves quadratically on a recent $${O}(d^{2})$$ bound of \cite{gajjar2023active}. Second, we show that $$\tilde{O}(d)$$ samples suffice even in the more difficult setting when $$f$$ is \emph{unknown}. Our results leverage tools from high dimensional probability, including Dudley's inequality and dual Sudakov minoration, as well as a novel, distribution-aware discretization of the class of Lipschitz functions.
more »
« less
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
We consider the problem of active learning for single neuron models, also sometimes called “ridge functions”, in the agnostic setting (under adversarial label noise). Such models have been shown to be broadly effective in modeling physical phenomena, and for constructing surrogate data-driven models for partial differential equations. Surprisingly, we show that for a single neuron model with any Lipschitz non-linearity (such as the ReLU, sigmoid, absolute value, low-degree polynomial, among others), strong provable approximation guarantees can be obtained using a well-known active learning strategy for fitting linear functions in the agnostic setting. Namely, we can collect samples via statistical leverage score sampling, which has been shown to be nearoptimal in other active learning scenarios. We support our theoretical results with empirical simulations showing that our proposed active learning strategy based on leverage score sampling outperforms (ordinary) uniform sampling when fitting single neuron models.
more »
« less
- Award ID(s):
- 2045590
- PAR ID:
- 10495899
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Journal Name:
- Proceedings of The 26th International Conference on Artificial Intelligence and Statistics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting by combining marginal leverage score sampling with non- independent sampling strategies that promote spatial coverage. In particular, we propose an easily implemented method based on the pivotal sampling algorithm, which we test on problems motivated by learning-based methods for parametric PDEs and uncertainty quantification. In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to 50%. We support our findings with two theoretical results. First, we show that any non-independent leverage score sampling method that obeys a weak one-sided l∞ independence condition (which includes pivotal sampling) can actively learn d dimensional linear functions with O(d log d) samples, matching independent sampling. This result extends recent work on matrix Chernoff bounds under l∞ independence, and may be of interest for analyzing other sampling strategies beyond pivotal sampling. Second, we show that, for the important case of polynomial regression, our pivotal method obtains an improved bound on O(d) samples.more » « less
-
Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. We demonstrate how LIME can be used to generate locally faithful explanations for an active learning strategy, and how these explanations can be used to understand how different models and datasets explore a problem space over time. In order to quantify the per-subgroup differences in how an active learning strategy queries spatial regions, we introduce a notion of uncertainty bias (based on disparate impact) to measure the discrepancy in the confidence for a model's predictions between one subgroup and another. Using the uncertainty bias measure, we show that our query explanations accurately reflect the subgroup focus of the active learning queries, allowing for an interpretable explanation of what is being learned as points with similar sources of uncertainty have their uncertainty bias resolved. We demonstrate that this technique can be applied to track uncertainty bias over user-defined clusters or automatically generated clusters based on the source of uncertainty.more » « less
-
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification. We begin our investigation with the observation that agnostic algorithms \emph{cannot} be minimax-optimal in the realizable setting. Hence, we design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors and are general-purpose, accommodating a wide variety of function classes including kernel methods, H{ö}lder smooth functions, and convex functions. The sample complexities of our algorithms can be quantified in terms of well-known quantities like the extended teaching dimension and haystack dimension. However, unlike algorithms based directly on those combinatorial quantities, our algorithms are computationally efficient. To achieve computational efficiency, our algorithms sample from the version space using Monte Carlo "hit-and-run" algorithms instead of maintaining the version space explicitly. Our approach has two key strengths. First, it is simple, consisting of two unifying, greedy algorithms. Second, our algorithms have the capability to seamlessly leverage prior knowledge that is often available and useful in practice. In addition to our new theoretical results, we demonstrate empirically that our algorithms are competitive with Gaussian process UCB methods.more » « less
-
Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. We demonstrate how LIME can be used to generate locally faithful explanations for an active learning strategy, and how these explanations can be used to understand how different models and datasets explore a problem space over time. These explanations can also be used to generate batches based on common sources of uncertainty. These regions of common uncertainty can be useful for understanding a model’s current weaknesses. In order to quantify the per-subgroup differences in how an active learning strategy queries spatial regions, we introduce a notion of uncertainty bias (based on disparate impact) to measure the discrepancy in the confidence for a model’s predictions between one subgroup and another. Using the uncertainty bias measure, we show that our query explanations accurately reflect the subgroup focus of the active learning queries, allowing for an interpretable explanation of what is being learned as points with similar sources of uncertainty have their uncertainty bias resolved. We demonstrate that this technique can be applied to track uncertainty bias over user-defined clusters or automatically generated clusters based on the source of uncertainty. We also measure how the choice of initial labeled examples effects groups over time.more » « less
An official website of the United States government

