skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging Frontiers in Human–Robot Interaction
Abstract Effective interactions between humans and robots are vital to achieving shared tasks in collaborative processes. Robots can utilize diverse communication channels to interact with humans, such as hearing, speech, sight, touch, and learning. Our focus, amidst the various means of interactions between humans and robots, is on three emerging frontiers that significantly impact the future directions of human–robot interaction (HRI): (i) human–robot collaboration inspired by human–human collaboration, (ii) brain-computer interfaces, and (iii) emotional intelligent perception. First, we explore advanced techniques for human–robot collaboration, covering a range of methods from compliance and performance-based approaches to synergistic and learning-based strategies, including learning from demonstration, active learning, and learning from complex tasks. Then, we examine innovative uses of brain-computer interfaces for enhancing HRI, with a focus on applications in rehabilitation, communication, brain state and emotion recognition. Finally, we investigate the emotional intelligence in robotics, focusing on translating human emotions to robots via facial expressions, body gestures, and eye-tracking for fluid, natural interactions. Recent developments in these emerging frontiers and their impact on HRI were detailed and discussed. We highlight contemporary trends and emerging advancements in the field. Ultimately, this paper underscores the necessity of a multimodal approach in developing systems capable of adaptive behavior and effective interaction between humans and robots, thus offering a thorough understanding of the diverse modalities essential for maximizing the potential of HRI.  more » « less
Award ID(s):
2053498
PAR ID:
10495926
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Intelligent & Robotic Systems
Volume:
110
Issue:
2
ISSN:
1573-0409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of Augmented Reality (AR) into Human–Robot Interaction (HRI) represents a significant advancement in collaborative technologies. This paper provides a comprehensive review of AR applications within HRI with a focus on manufacturing, emphasizing their role in enhancing collaboration, trust, and safety. By aggregating findings from numerous studies, this research highlights key challenges, including the need for improved Situational Awareness, enhanced safety, and more effective communication between humans and robots. A framework developed from the literature is presented, detailing the critical elements of AR necessary for advancing HRI. The framework outlines effective methods for continuously evaluating AR systems for HRI. The framework is supported with the help of two case studies and another ongoing research endeavor presented in this paper. This structured approach focuses on enhancing collaboration and safety, with a strong emphasis on integrating best practices from Human–Computer Interaction (HCI) centered around user experience and design. 
    more » « less
  2. For robots to seamlessly interact with humans, we first need to make sure that humans and robots understand one another. Diverse algorithms have been developed to enable robots to learn from humans (i.e., transferring information from humans to robots). In parallel, visual, haptic, and auditory communication interfaces have been designed to convey the robot’s internal state to the human (i.e., transferring information from robots to humans). Prior research often separates these two directions of information transfer, and focuses primarily on either learning algorithms or communication interfaces. By contrast, in this survey we take an interdisciplinary approach to identify common themes and emerging trends that close the loop between learning and communication. Specifically, we survey state-of-the-art methods and outcomes for communicating a robot’s learning back to the human teacher during human-robot interaction. This discussion connects human-in-the-loop learning methods and explainable robot learning with multimodal feedback systems and measures of human-robot interaction. We find that—when learning and communication are developed together—the resulting closed-loop system can lead to improved human teaching, increased human trust, and human-robot co-adaptation. The paper includes a perspective on several of the interdisciplinary research themes and open questions that could advance how future robots communicate their learning to everyday operators. Finally, we implement a selection of the reviewed methods in a case study where participants kinesthetically teach a robot arm. This case study documents and tests an integrated approach for learning in ways that can be communicated, conveying this learning across multimodal interfaces, and measuring the resulting changes in human and robot behavior. 
    more » « less
  3. The human-robot interaction (HRI) field has rec- ognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for suc- cessful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications. 
    more » « less
  4. Work in Human–Robot Interaction (HRI) has investigated interactions between one human and one robot as well as human–robot group interactions. Yet the field lacks a clear definition and understanding of the influence a robot can exert on interactions between other group members (e.g., human-to-human). In this article, we define Interaction-Shaping Robotics (ISR), a subfield of HRI that investigates robots that influence the behaviors and attitudes exchanged between two (or more) other agents. We highlight key factors of interaction-shaping robots that include the role of the robot, the robot-shaping outcome, the form of robot influence, the type of robot communication, and the timeline of the robot’s influence. We also describe three distinct structures of human–robot groups to highlight the potential of ISR in different group compositions and discuss targets for a robot’s interaction-shaping behavior. Finally, we propose areas of opportunity and challenges for future research in ISR. 
    more » « less
  5. Effective human-robot interaction is increasingly vital across various domains, including assistive robotics, emotional communication, entertainment, and industrial automation. Visual feedback, a common feature of current interfaces, may not be suitable for all environments. Audio feedback serves as a critical supplementary communication layer in settings where visibility is low or where robotic operations generate extensive data. Sonification, which transforms a robot's trajectory, motion, and environmental signals into sound, enhances users' comprehension of robot behavior. This improvement in understanding fosters more effective, safe, and reliable Human-Robot Interaction (HRI). Demonstrations of auditory data sonification's benefits are evident in real-world applications such as industrial assembly, robot-assisted rehabilitation, and interactive robotic exhibitions, where it promotes cooperation, boosts performance, and heightens engagement. Beyond conventional HRI environments, auditory data sonification shows substantial potential in managing complex robotic systems and intricate structures, such as hyper-redundant robots and robotic teams. These systems often challenge operators with complex joint monitoring, mathematical kinematic modeling, and visual behavior verification. This dissertation explores the sonification of motion in hyper-redundant robots and teams of industrial robots. It delves into the Wave Space Sonification (WSS) framework developed by Hermann, applying it to the motion datasets of protein molecules modeled as hyper-redundant mechanisms with numerous rigid nano-linkages. This research leverages the WSS framework to develop a sonification methodology for protein molecules' dihedral angle folding trajectories. Furthermore, it introduces a novel approach for the systematic sonification of robotic motion across varying configurations. By employing localized wave fields oriented within the robots' configuration space, this methodology generates auditory outputs with specific timbral qualities as robots move through predefined configurations or along certain trajectories. Additionally, the dissertation examines a team of wheeled industrial/service robots whose motion patterns are sonified using sinusoidal vibratory sounds, demonstrating the practical applications and benefits of this innovative approach. 
    more » « less