skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acoustic driven circulation around cylindrical obstructions in microchannels
We introduce an approach to generate direction-controlled circulation around cylindrical obstructions in channels using a piezoelectric transducer embedded porous-channel device fabricated by photolithography. To transmit acoustic signals into the channel, a single piezoelectric transducer was attached, operating at voltage levels of 5, 10, 15, and 20 V. Microscopic particle image velocimetry was employed to analyze the flow patterns in the channels. The analysis revealed two opposing circulation tendencies around the pillars located at two opposite sides of the channel in the longitudinal direction. The strength of circulation was found to be minimal in the middle of the channel and increased gradually toward the two ends of the channels. Furthermore, we observed that the circulation strength was maximum near the axial centerline and minimum at the boundaries along the width of the channels. Comparing the voltage levels, the higher voltage signals produced a higher strength of circulation than the lower voltage signals in all cases. Additionally, we found that the strength of circulation increased almost linearly and then decayed exponentially in the radial direction from the surfaces of the pillars. The observed velocity fields around individual cylinders matched well with the Görtler vortex model. The reported circulation phenomenon around pillars can be applied in non-contact fluid stirring and mixing in bio-chemical systems and lab-on-a-chip systems and may also provide additional degrees of freedom in object tweezing, trapping, and levitation.  more » « less
Award ID(s):
2050105
PAR ID:
10495959
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
11
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite its relatively small magnitude, cross-channel circulation in estuaries can influence the along-channel momentum balance, dispersion, and transport. We investigate spatial and temporal variation in cross-channel circulation at two contrasting sites in the Hudson River estuary. The two sites differ in the relative strength and direction of Coriolis and curvature forcing. We contrast the patterns and magnitudes of flow at the two sites during varying conditions in stratification driven by tidal amplitude and river discharge. We found well-defined flows during flood tides at both sites, characterized by mainly two-layer structures when the water column was more homogeneous and structures with three or more layers when the water column was more stratified. Ebb tides had generally weaker and less definite flows, except at one site where curvature and Coriolis reinforced each other during spring tide ebbs. Cross-channel currents had similar patterns, but were oppositely directed at the two sites, demonstrating the importance of curvature even in channels with relatively gradual curves. Coriolis and curvature dominated the measured terms in the cross-channel momentum balance. Their combination was generally consistent with driving the observed patterns and directions of flow, but local acceleration and cross-channel advection made some notable contributions. A large residual in the momentum balance indicates that some combination of vertical stress divergence, baroclinic pressure gradients, and along-channel and vertical advection must play an essential role, but data limitations prevented an accurate estimation of these terms. Cross-channel advection affected the along-channel momentum balance at times, with implications for the exchange flow’s strength. Significance StatementCurrents that flow across the channel in an estuary move slower than those flowing along the channel, but they can transport materials and change water properties in important ways, affecting human uses of estuaries such as shipping, aquaculture, and recreation. We wanted to better understand cross-channel currents in the Hudson River estuary. We found that larger tides produced the strongest cross-channel currents with a two-layer pattern, compared to weaker currents with three layers during smaller tides. Higher or lower river flow also affected current strength. Comparing two locations, we saw cross-channel currents moving in opposite directions because of differences in the curvature of the river channel. Our results show how channel curvature and Earth’s rotation combine to produce cross-channel currents. 
    more » « less
  2. Evaporation-driven spontaneous capillary flow presents a promising approach for driving electrolytes through electrically charged channels and pores in electrokinetic energy conversion devices. However, there are no literature reports of detailed flow visualization in these systems and/or experimental observations relating the liquid velocity and evaporation rate to the generated voltage and current. In this manuscript, we describe such a visualization study for a glass channel based electrokinetic energy conversion device with one of its channel terminals left open to ambient air for facilitating the evaporation process. Fluorescence microscopy was used to measure the liquid velocity in the electrokinetic energy conversion channel by observing the advancement of an electrolyte solution dyed with a neutral tracer. The accumulation of the same dye tracer was also imaged at the open terminal of this glass conduit to estimate the rate of solvent evaporation, which was found to be consistent with the flow velocity measurements. Additionally, an electrochemical analyzer was employed to record the electrical voltage and current produced by the device under different operating conditions. The highest electrical power output was derived in our experiments upon flowing de-ionized water through a 1 μm deep channel, which also produced the fastest liquid velocity in it. Moreover, the energy conversion efficiency of our device was observed to increase for shallower channels and lower ionic strength electrolytes, consistent with previous literature reports on electrokinetic energy conversion platforms. 
    more » « less
  3. Abstract In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.97–7.40. Surprisingly, we did not find conclusive evidence for pH-dependent shifts in the voltage thresholds ( V* ) needed for alamethicin ion channel formation in the membrane. However, we did observe a clear modulation in the dynamics of pore formation with pH in time-dependent, pulsed voltage experiments. Moreover, at the same voltage, lowering the pH resulted in higher steady-state currents because of increased numbers of conductive peptide ion channels in the membrane. This was due to increased partitioning of alamethicin monomers into the membrane at pH 4.97, which is below the pKa (~5.3–5.7) of carboxylate groups on the glutamate residues of the peptide, making the monomers more hydrophobic. Neutralization of the negative charges on these residues, under acidic conditions, increased the concentration of peptide monomers in the membrane, shifting the equilibrium concentrations of peptide aggregate assemblies in the membrane to favor greater numbers of larger, increasingly more conductive pores. It also increased the relaxation time constants for pore formation and decay, and enhanced short-term facilitation and depression of the switching characteristics of the device. Modulating these thresholds globally and independently of alamethicin concentration and applied voltage will enable the assembly of neuromorphic computational circuitry with enhanced functionality. Impact statement We describe how to use pH as a modulatory “interneuron” that changes the voltage-dependent memristance of alamethicin ion channels in lipid bilayers by changing the structure and dynamical properties of the bilayer. Having the ability to independently control the threshold levels for pore conduction from voltage or ion channel concentration enables additional levels of programmability in a neuromorphic system. In this article, we note that barriers to conduction from membrane-bound ion channels can be lowered by reducing solution pH, resulting in higher currents, and enhanced short-term learning behavior in the form of paired-pulse facilitation. Tuning threshold values with environmental variables, such as pH, provide additional training and learning algorithms that can be used to elicit complex functionality within spiking neural networks. Graphical abstract 
    more » « less
  4. The present work details a novel approach to increase the transmitting sensitivity of piezoelectric micromachined ultrasonic transducer arrays and performing the direct modulation of digital information on the same device. The direct modulation system can reach 3× higher signal-to-noise ratio level and 3× higher communication range (from 6.2 cm boosted to 18.6 cm) when compared to more traditional continuous wave drive at the same energy consumption levels. When compared for the same transmission performance, the direct modulation consumes 80% less energy compared to the continues wave. The increased performance is achieved with a switching circuit that allows to generate a short high-AC voltage on the ultrasonic array, by using an LC tank and a bipolar junction transistor, starting with a low-DC voltage, making it CMOS-compatible. Since the modulation signal can directly be formed by the transmitted bits (on/off keying encoding) this also serve as the modulation for the data itself, hence direct modulation. The working principle of the circuit is described, optimization is performed relative to several circuital parameters and a high-performance experimental application is demonstrated. 
    more » « less
  5. The cuttlebone, a chambered gas-filled structure found in cuttlefish, serves a crucial role in buoyancy control for the animal. This study investigates the motion of liquid-gas interfaces within cuttlebone-inspired artificial channels. The cuttlebone’s unique microstructure, characterized by chambers divided by vertical pillars, exhibits interesting fluid dynamics at small scales while pumping water in and out. Various channels were fabricated with distinct geometries, mimicking cuttlebone features, and subjected to different pressure drops. The behavior of the liquid-gas interface was explored, revealing that channels with pronounced waviness facilitated more non-uniform air-water interfaces. Here, Lyapunov exponents were employed to characterize interface separation, and they indicated more differential motions with increased pressure drops. Channels with greater waviness and amplitude exhibited higher Lyapunov exponents, while straighter channels exhibited slower separation. This is potentially aligned with cuttlefish’s natural adaptation to efficient water transport near the membrane, where more straight channels are observed in real cuttlebone. 
    more » « less