skip to main content

Title: DepthGraphNet: Circuit Graph Isomorphism Detection via Siamese-Graph Neural Networks
Award ID(s):
2137288 2137283 2137259 2345055
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD)
Page Range / eLocation ID:
1 to 6
Medium: X
Snowbird, UT, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to essential applications requiring solid robustness or vigorous security standards, such as product recommendation and user behavior modeling. Under these scenarios, exploiting GNN's vulnerabilities and further downgrading its performance become extremely incentive for adversaries. Previous attackers mainly focus on structural perturbations or node injections to the existing graphs, guided by gradients from the surrogate models. Although they deliver promising results, several limitations still exist. For the structural perturbation attack, to launch a proposed attack, adversaries need to manipulate the existing graph topology, which is impractical in most circumstances. Whereas for the node injection attack, though being more practical, current approaches require training surrogate models to simulate a white-box setting, which results in significant performance downgrade when the surrogate architecture diverges from the actual victim model. To bridge these gaps, in this paper, we study the problem of black-box node injection attack, without training a potentially misleading surrogate model. Specifically, we model the node injection attack as a Markov decision process and propose Gradient-free Graph Advantage Actor Critic, namely G2A2C, a reinforcement learning framework in the fashion of advantage actor critic. By directly querying the victim model, G2A2C learns to inject highly malicious nodes with extremely limited attacking budgets, while maintaining a similar node feature distribution. Through our comprehensive experiments over eight acknowledged benchmark datasets with different characteristics, we demonstrate the superior performance of our proposed G2A2C over the existing state-of-the-art attackers. Source code is publicly available at:

    more » « less
  2. With the increase of multi-view graph data, multi-view graph clustering (MVGC) that can discover the hidden clusters without label supervision has attracted growing attention from researchers. Existing MVGC methods are often sensitive to the given graphs, especially influenced by the low quality graphs, i.e., they tend to be limited by the homophily assumption. However, the widespread real-world data hardly satisfy the homophily assumption. This gap limits the performance of existing MVGC methods on low homophilous graphs. To mitigate this limitation, our motivation is to extract high-level view-common information which is used to refine each view's graph, and reduce the influence of non-homophilous edges. To this end, we propose dual label-guided graph refinement for multi-view graph clustering (DuaLGR), to alleviate the vulnerability in facing low homophilous graphs. Specifically, DuaLGR consists of two modules named dual label-guided graph refinement module and graph encoder module. The first module is designed to extract the soft label from node features and graphs, and then learn a refinement matrix. In cooperation with the pseudo label from the second module, these graphs are refined and aggregated adaptively with different orders. Subsequently, a consensus graph can be generated in the guidance of the pseudo label. Finally, the graph encoder module encodes the consensus graph along with node features to produce the high-level pseudo label for iteratively clustering. The experimental results show the superior performance on coping with low homophilous graph data. The source code for DuaLGR is available at 
    more » « less